【題目】下列調(diào)查:

①了解某批種子的發(fā)芽率 ②了解某班學(xué)生對(duì)“社會(huì)主義核心價(jià)值觀”的知曉率

③了解某地區(qū)地下水水質(zhì) ④了解七年級(jí)(1)班學(xué)生參加“開(kāi)放性科學(xué)實(shí)踐活動(dòng)”完成次數(shù)

適合采取全面調(diào)查的是(

A.①③B.②④C.①②D.③④

【答案】B

【解析】

根據(jù)普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時(shí)間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似進(jìn)行判斷.

①了解某批種子的發(fā)芽率適合采取抽樣 調(diào)查;

②了解某班學(xué)生對(duì)社會(huì)主義核心價(jià)值觀的知曉率適合采取全面調(diào)查;

③了解某地區(qū)地下水水質(zhì)適合采取抽樣調(diào)查;

④了解七年級(jí)(1)班學(xué)生參加開(kāi)放性科學(xué)實(shí)踐活動(dòng)完成次數(shù)適合采取全面調(diào)查;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:

13x2+6xy+3y2

2)(x2+12-4x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)Pxy)滿(mǎn)足xy0,x0,則P點(diǎn)在( 。

A.第二象限B.第三象限

C.第四象限D.第二、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn)3x2﹣(2x2+5x1)﹣(3x+1),再求值,其中x10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(m,n),且mn0,m+n0,則點(diǎn)P( )

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四邊形中,∠A=∠C=90°.

(1)如圖1,若BE平分∠ABC,DF平分∠ADC的鄰補(bǔ)角,請(qǐng)寫(xiě)出BEDF的位置關(guān)系,并證明.

(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補(bǔ)角,判斷DEBF位置關(guān)系并證明.

(3)如圖3,若BE、DE分別五等分∠ABC、∠ADC的鄰補(bǔ)角(即∠CDE=,∠CBE=),則∠E=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副三角板如圖1擺放,∠C=∠DFE=90,∠B=30,∠E=45,點(diǎn)FBC,點(diǎn)ADF,AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線(xiàn)FB上時(shí)停止旋轉(zhuǎn)).

(1)當(dāng)∠AFD=_ __時(shí),DF∥AC;當(dāng)∠AFD=__ _時(shí),DF⊥AB;

(2)在旋轉(zhuǎn)過(guò)程中,DFAB的交點(diǎn)記為P,如圖2,若AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);

(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC, ∠ABC、∠ACB的三等分線(xiàn)交于點(diǎn)E、D,若∠BFC=132°,∠BGC=118°,則∠A的度數(shù)為( )

A. 65° B. 66° C. 70° D. 78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,1)B(4,1),Cx軸正半軸上一點(diǎn),且AC平分∠OAB.

(1)求證:∠OAC∠OCA

(2)如圖,若分別作∠AOC的三等分線(xiàn)及∠OCA的外角的三等分線(xiàn)交于點(diǎn)P,即滿(mǎn)足∠POC=∠AOC,∠PCE=∠ACE,求∠P的大;

(3)如圖③,在(2)中,若射線(xiàn)OP、CP滿(mǎn)足∠POC=∠AOC,∠PCE=∠ACE,猜想∠OPC的大小,并證明你的結(jié)論(用含n的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案