【題目】△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.

(1)如圖,若DF⊥AC,垂足為F,證明:DE=DF

(2)如圖,將(1)中的∠EDF繞點D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點F.DE=DF仍然成立嗎?說明理由。

(3)∠EDF繼續(xù)繞點D順時針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線相交于點F,DE=DF仍然成立嗎? 直接說出結(jié)論,不必說明理由。

【答案】(1)證明見解析(2)成立 (3)成立

【解析】

(1)證明△ABC是等邊三角形,∠B=∠C,BD=CD,進而證明△BED≌△CFD(ASA),即可證明DE=DF.

(2)取AC中點G,連接DG,證明△EDG≌△FDC(ASA),即可證明結(jié)論仍成立.

(3)過點DDN⊥AC于N,DM⊥AB于M,∠NDF=∠MDE,證明△DME≌△DNF(ASA)即可證明結(jié)論仍成立.

:(1)∵AB=AC,∠A=60°,

∴△ABC是等邊三角形,∠B=∠C=60°,

∵D是BC的中點,

∴BD=CD,

∵∠EDF=120°,DF⊥AC,

∴∠FDC=30°,

∴∠EDB=30°,

∴△BED≌△CFD(ASA),

∴DE=DF.

(2)取AC中點G,連接DG,如下圖,

∵D為BC的中點,

∴DG=AC=BD=CD,

∴△BDG是等邊三角形,

∴∠GDE+∠EDB=60°,

∵∠EDF=120°,

∴∠FDC+∠EDB=60°,

∴∠EDG=∠FDC,

∴△EDG≌△FDC(ASA),

∴DE=DF.

∴結(jié)論仍然成立.

(3)如下圖,過點DDN⊥AC于N,DM⊥AB于M,

∴∠DME=∠DNF=90°,

由(1)可知∠B=∠C=60°,

∴∠NDC=∠BDM=30°,DM=DN,

∴∠MDN=120°,即∠NDF=∠MDE,

∴△DME≌△DNF(ASA),

∴DE=DF,

∴仍然成立.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,已知點、,對連續(xù)作旋轉(zhuǎn)變換,依次得到,則的直角頂點的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三邊分別切⊙OD,E,F(xiàn).

(1)若∠A=40°,求∠DEF的度數(shù);

(2)AB=AC=13,BC=10,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10,BC=5,點P是邊AC上的一個動點,APD=∠ABCADBC,連接CD

(1)求證AD=2AP;

(2)如圖,若BACD的延長線交于點MAP=1,求AM的長;

(3)如圖,若ABDC的延長線交于點N,當CDPBCN相似時,求證點PAC的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的對角線,相交于點,點中點,若的周長為28,則的周長為(

A.12B.17C.19D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的對角線,相交于點,上的兩點,并且,連接.

1)求證;

2)若,連接,,判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了美化環(huán)境,建設魅力呼和浩特,呼和浩特市準備在一個廣場上種植甲、乙兩種花卉經(jīng)市場調(diào)查,甲種花卉的種植費用 (元)與種植面積之間的函數(shù)關系如圖所示乙種花卉的種植費用為每平方米100

1)直接寫出當時,的函數(shù)關系式.

2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,E、F 是平行四邊形 ABCD 的對角線 AC 上的兩點,AE=CF

求證:(1EB DF ;

2EBDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A,B兩個頂點在x軸的上方,點C的坐標是(-1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,記所得的像是△A′B′C.設點B的對應點B′的橫坐標是a,則點B的橫坐標是( )

A. - B. C. D.

查看答案和解析>>

同步練習冊答案