【題目】如圖,在中,,點邊(不包括端點)過三點的AB于另一點連結(jié)于點過點于點連結(jié)

1)求證:四邊形是菱形.

2)當時,求的直徑長.

【答案】1)詳見解析;(2

【解析】

1)通過證明,,,即可證明四邊形是菱形;

2)由菱形的性質(zhì)可知,EFBC,,根據(jù),結(jié)合勾股定理可求ABBC長,易證△AED≌△ACD,得AE=AC,則可求BE長,再根據(jù),求出ED,即可求出的直徑長.

解:(1)證明:∵A、C、D三點,且∠ACB=90°,

AD的直徑,

,

,,

,

,

∴在中,

,

,

,,

∴四邊形為菱形;

2)由(1)知四邊形為菱形,

EFBC,

∵∠ACB=90°,

,

,

,

由(1)知ED=CD,

DCE弧的中點,

∴∠DAE=DAC,

∴△AED≌△ACD,

,

,

,

,

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形中,為對角線上一點,過點于點,連接,的中點,連接

1)如圖1,求證:;

2)將圖1中的繞點逆時針旋轉(zhuǎn)45°,如圖2,取的中點,連接.問(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請說明理由.

3)將圖1中的繞點逆時計旋轉(zhuǎn)任意角度,如圖3,取的中點,連接.問(1)中的結(jié)論是否仍然成立?通過觀察你還能得出什么結(jié)論?(均不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線ly=﹣x+4x軸交于點A,與y軸交于點B,以AB為直徑作M,點P為線段OA上一動點(與點O、A不重合),作PCABC,連結(jié)BP并延長交O于點D

1)求點A,B的坐標和tanBAO的值;

2)設(shè)x,tanBPOy

x1時,求y的值及點D的坐標;

y關(guān)于x的函數(shù)表達式;

3)如圖2,連接OC,當點P在線段OA上運動時,求OCPD的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸交于兩點(在點左側(cè)),與軸交于點,連接,將沿所在的直線翻折,得到,連接

(1)的坐標為 ,點的坐標為 ;

(2)如圖1,若點落在拋物線的對稱軸上,且在軸上方,求拋物線的解析式.

(3)設(shè)的面積為,的面積為,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】疫情期間,阿里巴巴愛心助農(nóng)計劃全面啟動,集合天貓、淘寶、聚劃算、餓了么、盒馬、阿里鄉(xiāng)村事業(yè)部等,組成了線上線下農(nóng)產(chǎn)品銷售的全域網(wǎng)絡(luò),通過這次愛心助農(nóng),很多農(nóng)產(chǎn)品從滯銷轉(zhuǎn)變?yōu)槊撲N,以下是某淘寶商家在電商平臺上推出的.獼猴桃、.芒果這兩種水果,其銷售信息如下表:

品種

銷售信息

5所以內(nèi)(包含5斤),每斤8元;超過5斤,則超出部分打8

3斤以內(nèi)(包含3斤),每斤10元;超出3斤,所有芒果打9

1)小佳購買斤獼猴桃,付款元,請寫出的函數(shù)關(guān)系式;

2)若小佳購買10斤獼猴桃,小欣購買8斤芒果,比較誰的花費更低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,樂樂與小佳兩個人打算騎共享單車騎行出游,兩人打開手機進行選擇,已知附近共有3種品牌的4輛車,其中品牌有2輛,品牌和品牌各有1輛,手機上無法識別品牌,且有人選中車后其他人無法再選.

1)若樂樂首先選擇,求樂樂選中品牌單車的概率;

2)請用畫樹狀圖或列表的方法求樂樂和小佳選中同一品牌單車的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著智能手機的普及,支付寶支付微信支付等手機支付方式倍受廣大消費者的青睞,某商場對2019712月中使用這兩種手機支付方式的情況進行統(tǒng)計,得到如圖所示的折線圖,根據(jù)統(tǒng)計圖中的信息,得出以下四個推斷,其中不合理的是(

A.6個月中使用微信支付的總次數(shù)比使用支付寶支付的總次數(shù)多;

B.6個月中使用微信支付的消費總額比使用支付寶支付的消費總額大;

C.6個月中11月份使用手機支付的總次數(shù)最多;

D.9月份平均每天使用手機支付的次數(shù)比12月份平均每天使用手機支付的次數(shù)多;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段,直線垂直平分且交于點.以為圓心,長為半徑作弧,交直線兩點,分別連接

(1)根據(jù)題意,補全圖形;

(2)求證:四邊形為正方形.

查看答案和解析>>

同步練習冊答案