【題目】在平面直角坐標(biāo)系中,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),連接,將沿所在的直線翻折,得到,連接 .
(1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;
(2)如圖1,若點(diǎn)落在拋物線的對稱軸上,且在軸上方,求拋物線的解析式.
(3)設(shè)的面積為,的面積為,若,求的值.
【答案】(1)A(-1,0),B(3,0);(2);(3)或m=
【解析】
(1)令=0,求出x的值,即可求解;
(2)過點(diǎn)B作y軸的平行線BQ,過點(diǎn)D作x軸的平行線交y軸于點(diǎn)P、交BQ于點(diǎn)Q,證明△CPD∽△DQB,則,代入即可求解;
(3)連接OD交BC于點(diǎn)H,則DO⊥BC,過點(diǎn)H、D分別作x軸的垂線交于點(diǎn)N、M,用含m的式子表示S1,S2,根據(jù)得到DM=-m,進(jìn)而表示出HN=DM=-m根據(jù)OC∥HN得到△BOC∽△BNH,得到,求出BN,ON,根據(jù)垂直關(guān)系得到∠BHN=∠HON,由正切的定義可知,從而得到關(guān)于m的方程,故可求解.
(1)令=0,
解得x1=-1,x2=3
∴A(-1,0),B(3,0)
故答案為:(-1,0);(3,0);
(2)過點(diǎn)B作y軸的平行線BQ,過點(diǎn)D作x軸的平行線交y軸于點(diǎn)P、交BQ于點(diǎn)Q,
∵∠CDP+∠DCP=90°,∠PDC+∠QDB=90°,
∴∠QDB=∠DCP,
∵對稱軸x=-,
設(shè):D(1,n)(n>0),點(diǎn)C(0,3m),
∵∠CPD=∠BQD=90°,
∴△CPD∽△DQB,
∴,
其中:CP=n+3m,DQ=31=2,PD=1,BQ=n,CD=CO=3m,BD=OB=3,
將以上數(shù)值代入比例式得
p>解得n=,m=故拋物線的表達(dá)式為:;
(3)如圖2,連接OD交BC于點(diǎn)H,則DO⊥BC,過點(diǎn)H、D分別作x軸的垂線交于點(diǎn)N、M,
∵OC=3m,
S1=S△OBD=×OB×DM=DM,
S2=S△OAC=×AO×OC=-m,而,
則DM=-m,
∵H是OD的中點(diǎn),∴HN=DM=-m=OC,
∵OC∥HN
∴△BOC∽△BNH
∴
∴BN=BO=,則ON=3=,
則DO⊥BC,HN⊥OB,
∴∠HON+∠HBO=90°,∠BHN+∠HBO=90°,
則∠BHN=∠HON,則tan∠BHN=tan∠HON,
則
∴HN2=ON×BN==(-m
解得:m=±.
∴或m=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對“防溺水”安全知識的掌握情況,從全校1500名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測試,并將測試成績(百分制,得分均為整數(shù))進(jìn)行統(tǒng)計(jì)分析,繪制了不完整的頻數(shù)表和頻數(shù)直方圖.
組別 | 成績x(分) | 頻數(shù)(人) | 頻率 |
A組 | 50≤x<60 | 6 | 0.12 |
B組 | 60≤x<70 | a | 0.28 |
C組 | 70≤x<80 | 16 | 0.32 |
D組 | 80≤x<90 | 10 | 0.20 |
E組 | 90≤x≤100 | 4 | 0.08 |
由圖表中給出的信息回答下列問題:
(1)表中的a= ;抽取部分學(xué)生的成績的中位數(shù)在 組;
(2)把如圖的頻數(shù)直方圖補(bǔ)充完整;
(3)如果成績達(dá)到80分以上(包括80分)為優(yōu)秀,請估計(jì)該校1500名學(xué)生中成績優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的圖形W1和圖形W2.給出如下定義:在圖形W1上存在兩點(diǎn)A,B(點(diǎn)A,B可以重合),在圖形W2上存在兩點(diǎn)M,N,(點(diǎn)M于點(diǎn)N可以重合)使得AM=2BN,則稱圖形W1和圖形W2滿足限距關(guān)系
(1)如圖1,點(diǎn)C(1,0),D(-1,0),E(0,),點(diǎn)P在線段DE上運(yùn)動(dòng)(點(diǎn)P可以與點(diǎn)D,E重合),連接OP,CP.
①線段OP的最小值為_______,最大值為_______;線段CP的取值范直范圍是_____;
②在點(diǎn)O,點(diǎn)C中,點(diǎn)____________與線段DE滿足限距關(guān)系;
(2)如圖2,⊙O的半徑為1,直線(b>0)與x軸、y軸分別交于點(diǎn)F,G.若線段FG與⊙O滿足限距關(guān)系,求b的取值范圍;
(3)⊙O的半徑為r(r>0),點(diǎn)H,K是⊙O上的兩個(gè)點(diǎn),分別以H,K為圓心,1為半徑作圓得到⊙H和K,若對于任意點(diǎn)H,K,⊙H和⊙K都滿足限距關(guān)系,直接寫出r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017江蘇省常州市)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“其他”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問題:
(1)本次抽樣調(diào)查中的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有2000名學(xué)生,請根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)在邊(不包括端點(diǎn))過三點(diǎn)的交AB于另一點(diǎn)連結(jié)且于點(diǎn)過點(diǎn)作交于點(diǎn)連結(jié).
(1)求證:四邊形是菱形.
(2)當(dāng)時(shí),求的直徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與軸交于,兩點(diǎn),與軸交于點(diǎn),它的對稱軸是直線.
(1)求拋物線的表達(dá)式;
(2)連接,求線段的長;
(3)若點(diǎn)在軸上,且為等腰三角形,請求出符合條件的所有點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是線段AB上的一點(diǎn),AB=6cm,O是AB外一定點(diǎn).連接OP,將OP繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得OQ,連接PQ,AQ.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對線段AP,PQ,AQ的長度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)對于點(diǎn)P在AB上的不同位置,畫圖、測量,得到了線段AP,PQ,AQ的長度(單位:cm)的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PQ | 4.00 | 2.31 | 0.84 | 1.43 | 3.07 | 4.77 | 6.49 |
AQ | 4.00 | 3.08 | 2.23 | 1.57 | 1.40 | 1.85 | 2.63 |
在AP,PQ,AQ的長度這三個(gè)量中,確定 的長度是自變量, 的長度和 的長度都是這個(gè)自變量的函數(shù);/span>
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)AQ=PQ時(shí),線段AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班甲、乙、丙三名同學(xué)20天的體溫?cái)?shù)據(jù)記錄如下表:
甲的體溫 | 乙的體溫 | 丙的體溫 | ||||||||||||
溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 |
頻數(shù) | 5 | 5 | 5 | 5 | 頻數(shù) | 6 | 4 | 4 | 6 | 頻數(shù) | 4 | 6 | 6 | 4 |
則在這20天中,甲、乙、丙三名同學(xué)的體溫情況最穩(wěn)定的是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com