【題目】已知AB∥CD,點(diǎn)E為AB,CD之外任意一點(diǎn).
(1)如圖1,探究∠BED與∠B,∠D的數(shù)量關(guān)系,并說明理由;
(2)如圖2,探究∠CDE與∠B,∠E的數(shù)量關(guān)系,并說明理由.
【答案】(1) ∠B=∠BED+∠D. (2)∠CDE=∠B+∠BED.
【解析】
在①中過點(diǎn)E作EF∥AB,由平行線的性質(zhì)可得∠BEF=∠B,∠D=∠DEF,再根據(jù)∠BEF=∠BED+∠DEF等量代換即可得到結(jié)果;在②中過點(diǎn)E作EF∥AB,同①的方法,可找到∠BED與∠B、∠CDE的數(shù)量關(guān)系.
解:(1)∠B=∠BED+∠D.理由如下:
過點(diǎn)E作EF∥AB.
又∵AB∥CD,
∴EF∥AB∥CD.
∴∠BEF=∠B,∠D=∠DEF.
∵∠BEF=∠BED+∠DEF,
∴∠B=∠BED+∠D.
(2)∠CDE=∠B+∠BED.理由如下:
過點(diǎn)E作EF∥AB.
又∵AB∥CD,
∴EF∥AB∥CD.
∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.
又∵∠DEF=∠BEF-∠BED,
∴∠CDE+∠BEF-∠BED=∠B+∠BEF,
即∠CDE=∠B+∠BED.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,D是AB上的點(diǎn),過點(diǎn)D作交BC于點(diǎn)F,交AC的延長線于點(diǎn)E,連接CD,,則下列結(jié)論正確的有( )
①∠DCB=∠B;②CD=AB;③△ADC是等邊三角形;④若∠E=30°,則DE=EF+CF.
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠為了解工人在單位時(shí)間內(nèi)加工同一種零件的技能水平,隨機(jī)抽取了50名工人加工的零件進(jìn)行檢測,統(tǒng)計(jì)出他們各自加工的合格品數(shù)是1到8這八個(gè)整數(shù),現(xiàn)提供統(tǒng)計(jì)圖的部分信息如圖.
請解答下列問題:
(1)根據(jù)統(tǒng)計(jì)圖,寫出這50名工人加工出的合格品數(shù)的中位數(shù).
(2)寫出這50名工人加工出合格品數(shù)的眾數(shù)的可能取值.
(3)廠方認(rèn)定,工人在單位時(shí)間內(nèi)加工出的合格品數(shù)不低于2件為技能合格,否則,將接受技能再培訓(xùn),已知該廠有同類工人400名,請估計(jì)該廠將接受技能再培訓(xùn)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN
求證: ;
分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;
如圖4,當(dāng)時(shí),證明: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直錢AB、CD相交于點(diǎn)O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,△ABC的外角∠ABD的平分線與∠ACB的平分線交于點(diǎn)O,MN過點(diǎn)O,且MN∥BC,分別交AB、AC于點(diǎn)M、N.
求證:(1)MO=MB;(2)MN=CN﹣BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀把它均分成四個(gè)小長方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于多少?
(2)請用兩種不同的方法求圖②中陰影部分的面積.
(3)觀察圖②你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(m+n)2,(m-n)2,mn.
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
已知a+b=7,ab=5,求(a-b)2的值.(寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+mx+m﹣2=0.
(1)求證:無論m取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1 , x2 , 且滿足x12+x22=﹣3x1x2 , 求實(shí)數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com