【題目】如圖,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?請說明理由.
【答案】平行,理由見解析
【解析】
首先,根據(jù)角平分線的性質(zhì),得到對應(yīng)角的關(guān)系,∠4=∠1,再根據(jù)已知的條件,可等量代換,得到∠4=∠2=70°,根據(jù)平行的判定,即可得到AD∥BC;然后,根據(jù)平行的性質(zhì):兩直線平行,同位角相等,得到∠B=∠3=40°,簡單的運(yùn)算,根據(jù)∠B和∠BCD的關(guān)系,即可得到答案.
解:平行.
理由:∵CE平分∠BCD,
∴∠4=∠1,∠BCD=2∠1.
∵∠1=∠2=70°,
∴∠4=∠2=70°,∠BCD=140°.
∴AD∥BC.
∴∠B=∠3=40°.
∴∠B+∠BCD=40°+140°=180°.
∴AB∥CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解一路段車輛行駛速度的情況,交警統(tǒng)計(jì)了該路段上午7::0至9:00來往車輛的車速(單位:千米/時),并繪制成如圖所示的條形統(tǒng)計(jì)圖.這些車速的眾數(shù)、中位數(shù)分別是( 。
A. 眾數(shù)是80千米時,中位數(shù)是60千米時
B. 眾數(shù)是70千米時,中位數(shù)是70千米時
C. 眾數(shù)是60千米時,中位數(shù)是60千米時
D. 眾數(shù)是70千米時,中位數(shù)是60千米時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列推理過程:
已知:如圖,∠1+∠2=180°,∠3=∠B
求證:∠EDG+∠DGC=180°
證明:∵∠1+∠2=180°(已知)
∠1+∠DFE=180°( )
∴∠2= ( )
∴EF∥AB( )
∴∠3= ( )
又∵∠3=∠B(已知)
∴∠B=∠ADE( )
∴DE∥BC( )
∴∠EDG+∠DGC=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,對進(jìn)行循環(huán)往復(fù)的軸對稱變換,若原來點(diǎn)A坐標(biāo)是,則經(jīng)過第2019次變換后所得的A點(diǎn)坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知梯形ABCD,請使用無刻度直尺畫圖.
(1)在圖1中畫出一個與梯形ABCD面積相等,且以CD為邊的三角形;
(2)圖2中畫一個與梯形ABCD面積相等,且以AB為邊的平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,點(diǎn)E為AB,CD之外任意一點(diǎn).
(1)如圖1,探究∠BED與∠B,∠D的數(shù)量關(guān)系,并說明理由;
(2)如圖2,探究∠CDE與∠B,∠E的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式:
(1)a2b-abc; (2)3a(x-y)+9(y-x);
(3)(2a-b)2+8ab; (4)(m2-m)2+(m2-m)+ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(2,8),點(diǎn)N的坐標(biāo)為(2,6),將線段MN向右平移4個單位長度得到線段PQ(點(diǎn)P和點(diǎn)Q分別是點(diǎn)M和點(diǎn)N的對應(yīng)點(diǎn)),連接MP、NQ,點(diǎn)K是線段MP的中點(diǎn).
(1)求點(diǎn)K的坐標(biāo);
(2)若長方形PMNQ以每秒1個單位長度的速度向正下方運(yùn)動,(點(diǎn)A、B、C、D、E分別是點(diǎn)M、N、Q、P、K的對應(yīng)點(diǎn)),當(dāng)BC與x軸重合時停止運(yùn)動,連接OA、OE,設(shè)運(yùn)動時間為t秒,請用含t的式子表示三角形OAE的面積S(不要求寫出t的取值范圍);
(3)在(2)的條件下,連接OB、OD,問是否存在某一時刻t,使三角形OBD的面積等于三角形OAE的面積?若存在,請求出t值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com