【題目】如圖,I是△ABC的內(nèi)心,AI的延長(zhǎng)線交邊BC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E.

(1)BEIE相等嗎?請(qǐng)說明理由.

(2)連接BI,CI,CE,若∠BED=CED=60°,猜想四邊形BECI是何種特殊四邊形,并證明你的猜想.

【答案】(1)IE=BE,理由見解析;(2)四邊形BECI是菱形,證明見解析.

【解析】

(1)連接IB,只需證明∠IBE=∠BIE.根據(jù)三角形的外角的性質(zhì)、三角形的內(nèi)心是三角形的角平分線的交點(diǎn)以及圓周角定理的推論即可證明;

(2)如圖2,∠BED=∠CED=60°,可得∠ABC=∠ACB=60°,可得BE=CE,再由I△ABC的內(nèi)心,可得∠4=∠ICD,從而可得BI=IC,再由(1)證得IE=BE,可得BE=CE=BI=IC,繼而可得四邊形BECI是菱形.

(1)如圖1,連接BI,

∵I△ABC的內(nèi)心,

∴∠1=∠2,∠3=∠4,

∵∠BIE=∠1+∠3,

∠IBE=∠5+∠4,

∠5=∠1=∠2,

∴∠BIE=∠IBE,

∴IE=BE.

(2)四邊形BECI是菱形,

如圖2,∵∠BED=∠CED=60°,

∴∠ABC=∠ACB=60°,

∴BE=CE,

∵I△ABC的內(nèi)心,

∴∠4=∠ABC=30°,∠ICD=∠30°,

∴∠4=∠ICD,

∴BI=IC,

(1)證得IE=BE,

∴BE=CE=BI=IC,

四邊形BECI是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)E是菱形ABCDBC上的中點(diǎn),∠ABC=30°,P是對(duì)角線BD上一點(diǎn),且PC+PE.則菱形ABCD面積的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線C:y=x2+3x-10平移到C′.若兩條拋物線C,C′關(guān)于直線x=1對(duì)稱,則下列平移方法中正確的是( )

A. 將拋物線C向右平移個(gè)單位 B. 將拋物線C向右平移3個(gè)單位

C. 將拋物線C向右平移5個(gè)單位 D. 將拋物線C向右平移6個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=﹣x+3的圖象交x軸于點(diǎn)A,交y軸于點(diǎn)D,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C,其圖象過A、D兩點(diǎn),并與x軸交于另一個(gè)點(diǎn)B(B點(diǎn)在A點(diǎn)左側(cè)),若;

(1)求此拋物線的解析式;

(2)連結(jié)AC、BD,問在x軸上是否存在一個(gè)動(dòng)點(diǎn)Q,使A、C、Q三點(diǎn)構(gòu)成的三角形與△ABD相似.如果存在,求出Q點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

(3)如圖2,若點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在直線AD下方,(點(diǎn)P不與點(diǎn)A、點(diǎn)D重合),過點(diǎn)P作y軸的平行線l與直線AD交于點(diǎn)M,點(diǎn)N在直線AD上,且滿足△MPN∽△ABD,求△MPN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).

(1)求此二次函數(shù)的表達(dá)式;

(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

【答案】(1)y=-x2x+8(2)

【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點(diǎn)坐標(biāo),把BC兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式就可解答;

(2)過點(diǎn)FFGAB,垂足為G,由EFAC,得BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CABFG,根據(jù)S=SBCE-SBFE,求Sm之間的函數(shù)關(guān)系式.

解:(1)解方程x2-10x+16=0得x12,x28

∴B2,0)、C0,8

∴所求二次函數(shù)的表達(dá)式為y=-x2x8

(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,

∵OA6OC8, ∴AC10.

∵EF∥AC, ∴△BEF∽△BAC.

.  即. ∴EF.

過點(diǎn)F作FG⊥AB,垂足為G,

sin∠FEGsin∠CAB.∴. 

∴FG·8m.

∴SSBCESBFE

0m8

點(diǎn)睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),span>銳角三角函數(shù)的定義,割補(bǔ)法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.

型】解答
結(jié)束】
23

【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A(0,﹣6),點(diǎn)B(6,0).RtCDE中,CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點(diǎn)C與點(diǎn)A重合.RtCDE沿y軸正方向平行移動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí)停止運(yùn)動(dòng).解答下列問題:

(1)如圖(2),當(dāng)RtCDE運(yùn)動(dòng)到點(diǎn)D與點(diǎn)O重合時(shí),設(shè)CE交AB于點(diǎn)M,求BME的度數(shù).

(2)如圖(3),在RtCDE的運(yùn)動(dòng)過程中,當(dāng)CE經(jīng)過點(diǎn)B時(shí),求BC的長(zhǎng).

(3)在RtCDE的運(yùn)動(dòng)過程中,設(shè)AC=h,OAB與CDE的重疊部分的面積為S,請(qǐng)寫出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cmBC=8cm.動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒3cm的速度向定點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒2cm的速度向點(diǎn)B運(yùn)動(dòng),且MGBC,運(yùn)動(dòng)時(shí)間為t秒(0<t),連接MN

(1)用含t的式子表示MG;

(2)當(dāng)t為何值時(shí),四邊形ACNM的面積最?并求出最小面積;

(3)若△BMN與△ABC相似,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,BC=8,以CD為直徑作⊙O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形A′B′CD′的邊A′B′與⊙O相切,切點(diǎn)為E,邊CD′與⊙O相交于點(diǎn)F,則CF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PQ切⊙OE,ACPQC,交⊙OD.

(1)求證:AE平分∠BAC;

(2)AD=2,EC= ,BAC=60°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

小凱遇到這樣一個(gè)問題:如圖①,在四邊形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,AC=4,BD=6,AOB=30°,求四邊形ABCD的面積小凱發(fā)現(xiàn)分別過點(diǎn)A,C作直線BD的垂線,垂足分別為E,F(xiàn),設(shè)AOm,通過計(jì)算△ABD與△BCD的面積和可以使問題得到解決(如圖②).請(qǐng)回答:

(1)ABD的面積為________(用含m的式子表示);

(2)求四邊形ABCD的面積

參考小凱思考問題的方法解決問題:

如圖③,在四邊形ABCD對(duì)角線AC,BD相交于點(diǎn)O,AC=a,BD=b,AOB=α(0°<α<90°),則四邊形ABCD的面積為________(用含a,b,α的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案