【題目】如圖1,在直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點(diǎn),與一次函數(shù)的圖象交于點(diǎn).
(1)求的值及的表達(dá)式;
(2)直線與軸交于點(diǎn),直線與軸交于點(diǎn),求四邊形的面積;
(3)如圖2,已知矩形,,,,矩形隨邊在軸上平移而移動(dòng),若矩形與直線或有交點(diǎn),直接寫出的取值范圍.
【答案】(1); ; (2);(3)或
【解析】
(1)根據(jù)點(diǎn)E在一次函數(shù)圖象上,求出m的值,利用待定系數(shù)法即可求出直線l1的函數(shù)解析式;
(2)由(1)求出點(diǎn)B、C的坐標(biāo),利用S四邊形OBEC=S△OBE+S△OCE即可得解;
(3)分別求出矩形MNPQ在平移過(guò)程中,當(dāng)點(diǎn)Q在l1上、點(diǎn)N在l1上、點(diǎn)Q在l2上、點(diǎn)N在l2上時(shí)a的值,即可得解.
解:(1)∵點(diǎn)在一次函數(shù)圖像上,
∴,∴
設(shè)直線的表達(dá)式為
∵直線過(guò)點(diǎn)和
∴
解得,
∴直線的表達(dá)式為
(2)由(1)可知,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為
∴
(3)或,
當(dāng)矩形MNPQ的頂點(diǎn)Q在l1上時(shí),a的值為,
矩形MNPQ向右平移,當(dāng)點(diǎn)N在l1上時(shí),
,解得,即點(diǎn),
∴a的值為,
矩形MNPQ繼續(xù)向右平移,當(dāng)點(diǎn)Q在l2上時(shí),a的值為3,
矩形MNPQ繼續(xù)向右平移,當(dāng)點(diǎn)N在l2上時(shí),
x-3=1,解得x=4,即點(diǎn)N(4,1),
∴a的值4+2=6,
綜上所述,當(dāng)或3≤a≤6時(shí),矩形MNPQ與直線l1或l2有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,先有一張矩形紙片點(diǎn)分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點(diǎn)落在矩形的邊上,記為點(diǎn),點(diǎn)落在處,連接,交于點(diǎn),連接.下列結(jié)論:
②四邊形是菱形;
③重合時(shí),;
④的面積的取值范圍是
其中正確的是_____(把正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和直線都經(jīng)過(guò)點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)為拋物線上的動(dòng)點(diǎn),直線與軸、軸分別交于兩點(diǎn).
(1)求的值;
(2)當(dāng)是以為底邊的等腰三角形時(shí),求點(diǎn)的坐標(biāo);
(3)滿足(2)的條件時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時(shí)出發(fā),甲車以60千米/時(shí)的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達(dá)目的地后停止.甲、乙兩車相距的路程(千米)與甲車的行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)乙車的速度為 千米/時(shí), , .
(2)求甲、乙兩車相遇后與之間的函數(shù)關(guān)系式.
(3)當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:AB是⊙O的直徑,AC交⊙O于G,E是AG上一點(diǎn),D為△BCE內(nèi)心,BE交AD于F,且∠DBE=∠BAD.
(1)求證:BC是⊙O的切線;
(2)求證:DF=DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,且BC=6,AB=3,AD是∠BAC的平分線,與BC相交于點(diǎn)E,點(diǎn)G是BC上一點(diǎn),E為線段BG的中點(diǎn),DG⊥BC于點(diǎn)G,交AC于點(diǎn)F,則FG的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角三角形△ABC中,AC=6,∠C=90°,∠DCE=45°,AD=3,則BE的長(zhǎng)為_____________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)大小不同的三角板放在同一平面內(nèi),直角頂點(diǎn)重合于點(diǎn),點(diǎn)在上,,與交于點(diǎn),連接,若,,則_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的邊交軸于點(diǎn),軸,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),點(diǎn)的坐標(biāo)為,.
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)為軸上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),求出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com