【題目】如圖,AB是⊙O的直徑,AC是弦,D是的中點,過點D作EF垂直于直線AC,垂足為F,交AB的延長線于點E.
(1)求證:EF是⊙O的切線;
(2)若tanA=,AF=6,求⊙O的半徑.
【答案】(1)見解析;(2).
【解析】分析:連接OD,由D是的中點得∠1=∠2,又∠A=∠BOC,故∠A=∠1,從而OD∥AF.易證∠EDO=∠F=90°.故可得結(jié)論;
(2)設(shè)⊙O半徑為r,則OA=OD=OB=r.通過解直角三角形可得解.
詳解:(1)如圖1,連接OD.
∵EF⊥AF,∴∠F=90°.
∵D是的中點,
∴
∴∠1=∠2=∠BOC.
∵∠A=∠BOC, ∴∠A=∠1 .
∴OD∥AF.
∴∠EDO=∠F=90°.
∴OD⊥EF.
∴EF是⊙O的切線.
(2)設(shè)⊙O半徑為r,則OA=OD=OB=r.
在Rt△AFE中,tanA=,AF=6,
∴EF=AF·tanA=8.
∴.
∴OE=10-r.
∵cosA= ,
∴cos∠1= cos A=
∴r =, 即⊙O的半徑為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊選手在10次射擊訓(xùn)練中的成績統(tǒng)計圖(部分)如圖所示:
教練根據(jù)甲、乙兩名射擊選手的成績繪制了如下數(shù)據(jù)分析表:
選手 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 8 | 8 | c | |
乙 | 7. 5 | 6和9 | 2. 65 |
根據(jù)以上信息,請解答下面的問題:
(1)補全甲選手10次成績頻數(shù)分布圖;
(2)求的值;
(3)教練根據(jù)兩名選手的10次成績,決定選擇甲選手參加射擊比賽,教練的理由是什么?(至少從兩個不同角度說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:①過一點有且只有一條直線與已知直線平行;②過一點有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結(jié)、兩點的線段就是、兩點之間的距離,其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.
請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了 名學(xué)生?測試結(jié)果為C等級的學(xué)生數(shù)是 ,并補全條形圖;
(2)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩名恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=80°,∠B=40°.
(1)求作線段BC的垂直平分線DE,垂足為E,交AB于點D;(要求;尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接CD,求證:AC=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,BC=AC=3,點D是BC邊上一點,∠DAC=30°,點E是AD邊上一點,CE繞點C逆時針旋轉(zhuǎn)90°得到CF,連接DF,DF的最小值是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為等邊三角形ABC內(nèi)的一點, DA=5,DB=4,DC=3,將線段AD以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段AD',下列結(jié)論:①點D與點D'的距離為5;②∠ADC=150°;③△ACD'可以由△ABD繞點A逆時針旋轉(zhuǎn)60°得到;④點D到CD'的距離為3;⑤S四邊形ABCD′=6+ ,其中正確的有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com