【題目】已知△ABC,AB=AC,D為直線BC上一點(diǎn),E為直線AC上一點(diǎn),AD=AE ,設(shè)∠BAD=α,∠CDE=β.
(1)如圖,若點(diǎn)D在線段BC上,點(diǎn)E在線段AC上.
①如果∠ABC=60°,∠ADE=70°, 那么α=_______,β=_______.
②求α、β之間的關(guān)系式.
(2)是否存在不同于以上②中的α、β之間的關(guān)系式?若存在,求出這個(gè)關(guān)系式,若不存在,請說明理由.
【答案】(1)①20,10;②α=2β;(2)α=2β-180°.
【解析】
試題分析:(1)①在△ADE中,由AD=AE,∠ADE=70°,不難求出∠AED和∠DAE;由AB=AC,∠ABC=60°,可得∠BAC=∠C=∠ABC=60°,則α=∠BAC-∠DAE,再根據(jù)三角形外角的性質(zhì)可得β=∠AED-∠C;②求解時(shí)可借助設(shè)未知數(shù)的方法,然后再把未知數(shù)消去的方法,可設(shè)∠ABC=x,∠ADE=y;(2)有很多種不同的情況,做法與(1)中的②類似,可求這種情況:點(diǎn)E在CA延長線上,點(diǎn)D在線段BC上.
試題解析:(1)①∵AD=AE,∴∠AED=∠ADE=70°,∠DAE=40°,又∵AB=AC,∠ABC=60°,∴∠BAC=∠C=∠ABC=60°,∴α=∠BAC-∠DAE=60°-40°=20°,β=∠AED-∠C=70°-60°=10°;
②設(shè)∠ABC=x,∠ADE=y,則∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β,∴α=2β.
(2)如圖2,點(diǎn)E在CA延長線上,點(diǎn)D在線段BC上,設(shè)∠ABC=x,∠ADE=y,則∠ACB=x,∠AED=y,在△ABD中,x+α=β-y,在△DEC中,x+y+β=180°,∴α=2β-180°.
注:求出其它關(guān)系式,相應(yīng)給分,如點(diǎn)E在CA的延長線上,點(diǎn)D在CB的延長線上,可得α=180°-2β.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象的一部分如圖所示.已知它的頂點(diǎn)M在第二象限,且經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(0,l).若此二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為C.
(1)試求a,b所滿足的關(guān)系式;
(2)當(dāng)△AMC的面積為△ABC面積的倍時(shí),求a的值;
(3)是否存在實(shí)數(shù)a,使得△ABC為直角三角形.若存在,請求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形的對角線與相交于點(diǎn),點(diǎn)為的中點(diǎn),連接并延長交的延長線于點(diǎn),連接.
(1)求證:;
(2)當(dāng),時(shí),請判斷四邊形的形狀,并證明你的結(jié)論.
(3)當(dāng)四邊形是正方形時(shí),請判斷的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的頂點(diǎn)A、D分別落在x軸、y軸,OD=2OA=6,AD:AB=3:1.則點(diǎn)B的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】軍運(yùn)會(huì)前某項(xiàng)工程要求限期完成,甲隊(duì)獨(dú)做正好按期完成,乙隊(duì)獨(dú)做則要誤期4天,現(xiàn)兩隊(duì)合作3天后,余下的工程再由乙隊(duì)獨(dú)做,比限期提前一天完成.
(1)請問該工程限期是多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為1000元,乙隊(duì)每天的施工費(fèi)用為800元,要使該項(xiàng)工程的總費(fèi)用不超過7000元,乙隊(duì)最多施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購進(jìn)的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進(jìn)價(jià);
該商場將購進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)證明:不論取何值,該函數(shù)圖像與軸總有公共點(diǎn);
(2)若該函數(shù)的圖像與軸交于點(diǎn)(0,3),求出頂點(diǎn)坐標(biāo)并畫出該函數(shù)圖像;
(3)在(2)的條件下,觀察圖像,解答下列問題:
①不等式的的解集是 ;
②若一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是 ;
③若一元二次方程在的范圍內(nèi)有實(shí)數(shù)根,則的取
值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯(cuò)誤的是( )
A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,直至得到C6,若點(diǎn)P(11,m)在第6段拋物線C6上,則m=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com