【題目】如圖,△ABC是等邊三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F為BC中點,連接AE.
(1)直接寫出∠BAE的度數(shù)為 ;
(2)判斷AF與CE的位置關系,并說明理由.
【答案】(1)90°;(2)AF∥EC,見解析
【解析】
(1)分別利用等邊三角形的性質和等腰三角形的性質求出∠BAC,∠CAE的度數(shù),然后利用∠BAE=∠BAC+∠CAE即可解決問題;
(2)根據(jù)等邊三角形的性質有AF⊥BC,然后利用等邊三角形的性質和等腰三角形的性質得出,∠BCE=90°則有EC⊥BC,再根據(jù)垂直于同一條直線的兩直線平行即可得出結論.
解:(1)∵△ABC是等邊三角形,
∴∠BAC=∠ACB=60°,
∵EA=EC,∠AEC=120°,
∴EAC=∠ECA=30°,
∴∠BAE=∠BAC+∠CAE=90°.
故答案為90°.
(2)結論:AF∥EC.
理由:∵AB=AC,BF=CF,
∴AF⊥BC,
∵∠ACB=60°,∠ACE=30°,
∴∠BCE=90°,
∴EC⊥BC,
∴AF∥EC.
科目:初中數(shù)學 來源: 題型:
【題目】直線AB與x軸交于點A(1,0),與y軸交于點B(0,-2).
(1)求直線AB的表達式;
(2)若直線AB上有一動點C,且,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖像相交于點,與軸相交于點.
(1)填空:的值為 , 的值為 ;
(2)觀察反比函數(shù)的圖像,當時,請直接寫出自變量的取值范圍;
(3)以為邊作菱形,使點在軸負半軸上,點在第二象限內,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一塊長為22 m,寬為17 m的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300 m2.若設道路寬為x m,根據(jù)題意可列出方程為______________________________.
【答案】(22-x)(17-x)=300(或x2-39x+74=0)
【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個長方形,根據(jù)長方形的面積公式列方程.設道路的寬應為x米,由題意有(22﹣x)(17﹣x)=300,故答案為:(22﹣x)(17﹣x)=300.
考點:由實際問題抽象出一元二次方程.
【題型】填空題
【結束】
17
【題目】x=1是關于x的一元二次方程x2+mx﹣5=0的一個根,則此方程的另一個根是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】試題分析:
根據(jù)兩方程的特點,使用“因式分解法”解兩方程即可.
試題解析:
(1)原方程可化為: ,
方程左邊分解因式得: ,
或,
解得: , .
(2)原方程可化為: ,即,
∴,
∴或,
解得: .
【題型】解答題
【結束】
20
【題目】已知x1,x2是關于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的矩形CEFD拼在一起,構成一個大的長方形ABEF.現(xiàn)將小長方形CEFD繞點C順時針旋轉至CE′F′D,旋轉角為.
(1)當點D′恰好落在EF邊上時,則旋轉角α的值為________度;
(2)如圖2,G為BC中點,且0°<α<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點C順時針旋轉一周的過程中,是否存在旋轉角α,使△DCD′與△CBD′全等?若能,直接寫出旋轉角α的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點的坐標為,將點向右平移個單位得到點,其中關于的一元一次不等式的解集為,過點作軸于.
(1)求兩點坐標及四邊形的面積;
(2)如圖2,點自點以1個單位/秒的速度在軸上向上運動,點自點以2個單位/秒的速度在軸上向左運動,設運動時間為秒(),是否存在一段時間使得,若存在,求出的取值范圍;若不存在,說明理由;
(3)在(2)的條件下,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,完成相應的任務;全等四邊形根據(jù)全等圖形的定又可知:四條邊分別相等、四個角也分別相等的兩個四邊形全等。在“探索三角形全等的條件”時,我們把兩個三角形中“一條邊和等”或“一個角相等”稱為一個條件.智慧小組的同學類比“探索三角形全等條件”的方法探索“四邊形全等的條件”,進行了如下思考:如圖1,四邊形和四邊形中,連接對角線,這樣兩個四邊形全等的問題就轉化為“”與“”的問題。若先給定“”的條件,只要再增加個條件使“”即可推出兩個四邊形中“四條邊分別相等、四個角也分別和等”,從而說明兩個四邊形全等。
按照智慧小組的思路,小明對圖中的四邊形與四邊形先給出和下條件: ,,小亮在此基礎上又給出“”兩個條件.他們認為滿足這五個條件能得到“四邊形四邊形”.
(1)請根據(jù)小明和小亮給出的條件,說明“四邊形四邊形”的理由;
(2)請從下面兩題中任選一題作答,我選擇 題.
在材料中“小明所給條件”的基礎上,小穎又給出兩個條件“”.滿足這五個條件 (填“能”或“不能”)得到四邊形四邊形
在材料中“小明所給條件的基礎上”,再添加兩個關于原四邊形的條件(要求:不同于小亮的條件),使四邊形四邊形,你添加的條件是① ,② .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com