【題目】如圖,數(shù)軸上有A,B兩點(diǎn),所表示的有理數(shù)分別為a、b,已知AB=12,原點(diǎn)O是線段AB上的一點(diǎn),且OA=2OB.
(1)a= ,b= .
(2)若動(dòng)點(diǎn)P,Q分別從A,B同時(shí)出發(fā),向右運(yùn)動(dòng),點(diǎn)P的速度為每秒2個(gè)單位長(zhǎng)度,點(diǎn)Q的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng).
①當(dāng)t為何值時(shí),2OP﹣OQ=4;
②當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí),動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度也向右運(yùn)動(dòng),當(dāng)點(diǎn)M追上點(diǎn)Q后立即返回,以同樣的速度向點(diǎn)P運(yùn)動(dòng),遇到點(diǎn)P后再立即返回,以同樣的速度向點(diǎn)Q運(yùn)動(dòng),如此往返,直到點(diǎn)P,Q停止時(shí),點(diǎn)M也停止運(yùn)動(dòng),求在此過(guò)程中點(diǎn)M行駛的總路程,并直接寫出點(diǎn)M最后位置在數(shù)軸上所對(duì)應(yīng)的有理數(shù).
【答案】(1)﹣8;4;(2)①t為1.6秒或8秒時(shí),2OP﹣OQ=4;②點(diǎn)M行駛的總路程為24和點(diǎn)M最后位置在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù)為16.
【解析】
(1)由AO=2OB可知,將12平均分為3份,其中AO占兩份為8,BO占一份為4,同時(shí)注意A點(diǎn)在原點(diǎn)左側(cè),B點(diǎn)在原點(diǎn)右側(cè);
(2)①先確定停止運(yùn)動(dòng)的時(shí)間,再分點(diǎn)P在原點(diǎn)左側(cè)和右側(cè)兩種情況討論;②點(diǎn)M運(yùn)動(dòng)的時(shí)間就是點(diǎn)P從點(diǎn)O開(kāi)始到追到點(diǎn)Q的時(shí)間,設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t秒,列式2t-t=8求解即可.
(1)∵AB=12,AO=2OB,
∴AO=8,OB=4,
∴A點(diǎn)所表示的實(shí)數(shù)為﹣8,B點(diǎn)所表示的實(shí)數(shù)為4,
∴a=﹣8,b=4.
故答案是:﹣8;4;
(2)①當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),如圖,
2t=12+t,t=12,
則,當(dāng)0<t<4時(shí),如圖,
AP=2t,OP=8﹣2t,BQ=t,OQ=4+t,
∵2OP﹣OQ=4,
∴2(8﹣2t)﹣(4+t)=4,
t==1.6,
當(dāng)4<t<12時(shí),如圖,
OP=2t﹣8,OQ=4+t,
則2(2t﹣8)﹣(4+t)=4,解得t=8,
綜上所述,當(dāng)t為1.6秒或8秒時(shí),2OP﹣OQ=4;
②當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí),8÷2=4,此時(shí),OQ=4+t=8,即點(diǎn)Q所表示的實(shí)數(shù)為8,如圖,
設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t秒,
由題意得:2t﹣t=8,解得t=8,
此時(shí),點(diǎn)P表示的實(shí)數(shù)為8×2=16,所以點(diǎn)M表示的實(shí)數(shù)也是16,
∴點(diǎn)M行駛的總路程為:3×8=24,
答:點(diǎn)M行駛的總路程為24和點(diǎn)M最后位置在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù)為16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一張長(zhǎng)方形紙片的長(zhǎng)AD=4,寬AB=1.點(diǎn)E在邊AD上,點(diǎn)F在BC邊上,將四邊形 ABFE沿直線EF翻折后,點(diǎn)B落在邊AD的中點(diǎn)G處,則EG等于( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形OABC中,動(dòng)點(diǎn)P從(0,3)出發(fā),沿所示的方向運(yùn)動(dòng),每當(dāng)碰到長(zhǎng)方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,第一次碰到長(zhǎng)方形的邊時(shí)的位置為P1(3,0),則第二次碰到長(zhǎng)方形的邊上一點(diǎn)P2的坐標(biāo)為________.當(dāng)點(diǎn)P第2018次碰到長(zhǎng)方形的邊時(shí),點(diǎn)P2018的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y= x的圖像經(jīng)過(guò)點(diǎn)A,點(diǎn)A的縱坐標(biāo)為6,反比例函數(shù)y= 的圖像也經(jīng)過(guò)點(diǎn)A,第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)的圖像上,過(guò)點(diǎn)B作BC∥x軸,交y軸于點(diǎn)C,且AC=AB,求:
(1)這個(gè)反比例函數(shù)的解析式;
(2)直線AB(一次函數(shù))的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了節(jié)約用水,對(duì)自來(lái)水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過(guò)10噸的部分,按2元/噸收費(fèi);超過(guò)10噸的部分按2.5元/噸收費(fèi).
(1)若黃老師家5月份用水16噸,問(wèn)應(yīng)交水費(fèi)多少元?
(2)若黃老師家6月份交水費(fèi)30元,問(wèn)黃老師家5月份用水多少噸?
(3)若黃老師家7月用水a噸,問(wèn)應(yīng)交水費(fèi)多少元?(用a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“*”定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,規(guī)定a*b=ab2+2ab+a.
如:1*3=1×32+2×1×3+1=16
(1)求2*(﹣2)的值;
(2)若2*x=m,(其中x為有理數(shù)),試比較m,n的大小;
(3)若[]=a+4,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
【答案】10或6
【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,
如圖1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時(shí)BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時(shí)BC=BD-CD=8-2=6,
則BC的長(zhǎng)為6或10.
【題型】填空題
【結(jié)束】
12
【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過(guò)P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形ABC為等腰直角三角形,其中∠A=90°,BC長(zhǎng)為6.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出各個(gè)頂點(diǎn)的坐標(biāo).
(2)將(1)中各頂點(diǎn)的橫坐標(biāo)不變,將縱坐標(biāo)都乘-1,與原圖案相比,所得的圖案有什么變化?
(3)將(1)中各頂點(diǎn)的橫坐標(biāo)都乘-2,縱坐標(biāo)保持不變,與原圖案相比,所得的圖案有什么變化?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com