【題目】如圖,直線y=kx+b經(jīng)過點(diǎn)A(5,0),B(1,4).
(1)求直線AB的解析式;
(2)若直線y=2x﹣4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4≥kx+b的解集.
【答案】(1)y=﹣x+5;(2)點(diǎn)C的坐標(biāo)為(3,2);(3)x≥3.
【解析】
(1)利用待定系數(shù)法求一次函數(shù)解析式解答即可;
(2)聯(lián)立兩直線解析式,解方程組即可得到點(diǎn)C的坐標(biāo);
(3)根據(jù)圖形,找出點(diǎn)C左邊的部分的x的取值范圍即可.
(1)∵直線y=﹣kx+b經(jīng)過點(diǎn)A(5,0)、B(1,4),
∴,
解方程組得,
∴直線AB的解析式為y=﹣x+5;
(2)∵直線y=2x﹣4與直線AB相交于點(diǎn)C,
∴解方程組,
解得,
∴點(diǎn)C的坐標(biāo)為(3,2);
(3)由圖可知,x≥3時(shí),2x﹣4≥kx+b.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為直線AB上的動(dòng)點(diǎn)(不與A,B重合),作射線DE并繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)45°,交直線BC邊于點(diǎn)F,連結(jié)EF.
探究:當(dāng)點(diǎn)E在邊AB上,求證:EF=AE+CF.
應(yīng)用:(1)當(dāng)點(diǎn)E在邊AB上,且AD=2時(shí),則△BEF的周長是______.
(2)當(dāng)點(diǎn)E不在邊AB上時(shí),EF,AE,CF三者的數(shù)量關(guān)系是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠B=90°AB∥DF,AB=3cm,BD=8cm,點(diǎn)C是線段BD上一動(dòng)點(diǎn),點(diǎn)E是直線DF上一動(dòng)點(diǎn),且始終保持AC⊥CE。
(1)試說明:∠ACB =∠CED
(2)當(dāng)C為BD的中點(diǎn)時(shí), ABC與EDC全等嗎?若全等,請說明理由;若不全等,請改變BD的長(直接寫出答案),使它們?nèi)取?/span>
(3)若AC=CE ,試求DE的長
(4)在線段BD的延長線上,是否存在點(diǎn)C,使得AC=CE,若存在,請求出DE的長及△AEC的面積;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠ COA=60°,點(diǎn)P為x軸上的—個(gè)動(dòng)點(diǎn),點(diǎn)P不與點(diǎn)O、點(diǎn)A重合.連結(jié)CP,過點(diǎn)P作PD交AB于點(diǎn)D.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)什么位置時(shí),△OCP為等腰三角形,求這時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)什么位置時(shí),使得∠CPD=∠OAB,且=,求這時(shí)點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(0,4),線段的位置如圖所示,其中點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(3,).
(1)將線段平移得到線段,其中點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn).
①點(diǎn)平移到點(diǎn)的過程可以是:先向 平移 個(gè)單位長度,再向 平移 個(gè)單位長度;
②點(diǎn)的坐標(biāo)為 .
(2)在(1)的條件下,若點(diǎn)的坐標(biāo)為(4,0),連接,畫出圖形并求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:
①;②方程的兩個(gè)根是,③;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)時(shí),隨增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的直角坐標(biāo)系中,畫出函數(shù)的圖象,并結(jié)合圖象回答下列問題:
(1)y的值隨x值的增大而______(填“增大”或“減小”);
(2)圖象與x軸的交點(diǎn)坐標(biāo)是_____;圖象與y軸的交點(diǎn)坐標(biāo)是______;
(3)當(dāng)x 時(shí),y <0 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰 Rt△ABC 中,∠ACB=90°,P 是射線CB上一點(diǎn)(在B點(diǎn)右側(cè)),連接AP,延長PC至點(diǎn)Q,使得 CQ=CP,過點(diǎn)Q作QH⊥AP交PA延長線于點(diǎn)H,交BA延長線于點(diǎn)M,用等式表示線段MB與PQ之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com