已知二次函數(shù)(m是常數(shù))
(1)求證:不論m為何值,該函數(shù)的圖像與x軸沒有公共點(diǎn);
(2)把該函數(shù)的圖像沿x軸向下平移多少個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖像與x軸只有一個(gè)公共點(diǎn)?

(1)證明見解析;(2)3.

解析試題分析:(1)求出根的判別式,即可得出答案.
(2)先化成頂點(diǎn)式,根據(jù)頂點(diǎn)坐標(biāo)和平移的性質(zhì)得出即可.
試題解析:(1)∵,
∴方程沒有實(shí)數(shù)解.
∴不論m為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn).
(2)∵,
∴把函數(shù)的圖象延y軸向下平移3個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,它的頂點(diǎn)坐標(biāo)是(m,0).
∴這個(gè)函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn).
∴把函數(shù)的圖象延y軸向下平移3個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn).
考點(diǎn):1.拋物線與x軸的交點(diǎn)問題;2.一元二次方程根的判別式;3.二次函數(shù)圖象與平移變換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=-x2+x-2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,分別過點(diǎn)B,C作y軸,x軸的平行線,兩平行線交于點(diǎn)D,將△BDC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使點(diǎn)D旋轉(zhuǎn)到y(tǒng)軸上得到△FEC,連接BF.
(1)求點(diǎn)B,C所在直線的函數(shù)解析式;
(2)求△BCF的面積;
(3)在線段BC上是否存在點(diǎn)P,使得以點(diǎn)P,A,B為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線經(jīng)過A、C(0,4)兩點(diǎn),與x軸的另一交點(diǎn)是B.
(1)求拋物線的解析式;
(2)若點(diǎn)在第一象限的拋物線上,求點(diǎn)D關(guān)于直線BC的對(duì)稱點(diǎn)的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)D作DE⊥BC于點(diǎn)E,反比例函數(shù)的圖象經(jīng)過點(diǎn)E,點(diǎn)在此反比例函數(shù)圖象上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)(k是實(shí)數(shù)).
教師:請(qǐng)獨(dú)立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.
學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動(dòng)一員,又補(bǔ)充一些結(jié)論,并從中選擇如下四條:
①存在函數(shù),其圖像經(jīng)過(1,0)點(diǎn);
②函數(shù)圖像與坐標(biāo)軸總有三個(gè)不同的交點(diǎn);
③當(dāng)時(shí),不是y隨x的增大而增大就是y隨x的增大而減小;
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù);
教師:請(qǐng)你分別判斷四條結(jié)論的真假,并給出理由,最后簡(jiǎn)單寫出解決問題時(shí)所用的數(shù)學(xué)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,拋物線經(jīng)過A(-1,0),C(3,-2)兩點(diǎn),與軸交于點(diǎn)D,與軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線)將四邊形ABCD面積二等分,求的值;
(3)如圖2,過點(diǎn)E(1,1)作EF⊥軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)P旋轉(zhuǎn)180°得△MNQ(點(diǎn)M、N、Q分別與點(diǎn)A、E、F對(duì)應(yīng)),使點(diǎn)M、N在拋物線上,求點(diǎn)N和點(diǎn)P的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線經(jīng)過A(-1,0),B(5,0),C(0,?)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng)。當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移。DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5)。解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由。
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由。(圖(3)供同學(xué)們做題使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線過點(diǎn),這條拋物線的對(duì)稱軸與x軸交于點(diǎn)C,點(diǎn)P為射線CB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)D為此拋物線對(duì)稱軸上一點(diǎn),且?CPD=
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,△PCD的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)過點(diǎn)P作PE⊥DP,連接DE,F(xiàn)為DE的中點(diǎn),試求線段BF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司開發(fā)了一種新型的家電產(chǎn)品,又適逢“家電下鄉(xiāng)”的優(yōu)惠政策.現(xiàn)投資40萬元用于該產(chǎn)品的廣告促銷,已知該產(chǎn)品的本地銷售量y1(萬臺(tái))與本地的廣告費(fèi)用x(萬元)之間的函數(shù)關(guān)系滿足,該產(chǎn)品的外地銷售量y2(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系可用如圖所示的拋物線和線段AB來表示,其中點(diǎn)A為拋物線的頂點(diǎn).

(1)結(jié)合圖象,寫出y2(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系式;
(2)求該產(chǎn)品的銷售總量y(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系式;
(3)如何安排廣告費(fèi)用才能使銷售總量最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案