如圖,拋物線經(jīng)過A、C(0,4)兩點,與x軸的另一交點是B.
(1)求拋物線的解析式;
(2)若點在第一象限的拋物線上,求點D關(guān)于直線BC的對稱點的坐標(biāo);
(3)在(2)的條件下,過點D作DE⊥BC于點E,反比例函數(shù)的圖象經(jīng)過點E,點在此反比例函數(shù)圖象上,求的值.
(1);(2)(0,1);(3).
解析試題分析:(1)直接利用待定系數(shù)法求出拋物線解析式即可.
(2)首先求出D點坐標(biāo),進(jìn)而求出∠DCB=45°=∠BCD,則點D′在y軸上,且CD=CD′=3,即可得出D′點坐標(biāo).
(3)首先利用D,D′點坐標(biāo)得出E點坐標(biāo),即可得出反比例函數(shù)解析式,進(jìn)而得出的值.
試題解析:(1)∵拋物線經(jīng)過A(-1,0)、C(0,4)兩點,
∴,解得:.
∴拋物線的解析式為:.
(2)令,解得,
∴點B(0,4),OB=4.
∵點在第一象限的拋物線上,
∴,解得:a1=3,a2=-1.
∵點在第一象限,∴a2=-1不合題意舍去.∴a=3.
∴點D(3,4).
∵C(0,4),∴CD∥x軸,CD=3.
∵OC=4,OB=4,∴∠DCB=45°=∠BCD.
∴點D′在y軸上,且CD=CD′=3.
∴點D′(0,1).
(3)∵點D(3,4),點D′(0,1),∴點E.
∴反比例函數(shù)解析式為:.
∵點F在反比例函數(shù)圖象上,∴m≠0.
∴,即.
∴.
考點:1.二次函數(shù)綜合題;2.待定系數(shù)法的應(yīng)用;3.曲線上點的坐標(biāo)與方程的關(guān)系;4.軸對稱的性質(zhì);5.求代數(shù)式的值.
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在平面直角坐標(biāo)系xOy中,拋物線與x軸交于點A、B(點A在點B右側(cè)),與y軸交于點C(0,-3),且OA=2OC.
(1)求這條拋物線的表達(dá)式及頂點M的坐標(biāo);
(2)求的值;
(3)如果點D在這條拋物線的對稱軸上,且∠CAD=45º,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應(yīng)的碟寬為 ;拋物線y=4x2對應(yīng)的碟寬為 ;拋物線y=ax2(a>0)對應(yīng)的碟寬為 ;拋物線y=a(x﹣2)2+3(a>0)對應(yīng)的碟寬為 ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點,現(xiàn)將(2)中求得的拋物線記為y1,其對應(yīng)的準(zhǔn)蝶形記為F1.
①求拋物線y2的表達(dá)式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn= ,F(xiàn)n的碟寬有端點橫坐標(biāo)為 2 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點是否在一條直線上?若是,直接寫出該直線的表達(dá)式;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=-x2+bx+c與x軸交于點A(1,0)、C,交y軸于點B,對稱軸x=-1與x軸交于點D.
(1)求該拋物線的解析式和B、C點的坐標(biāo);
(2)設(shè)點P(x,y)是第二象限內(nèi)該拋物線上的一個動點,△PBD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)點G在x軸負(fù)半軸上,且∠GAB=∠GBA,求G的坐標(biāo);
(4)若此拋物線上有一點Q,滿足∠QCA=∠ABO,若存在,求直線QC的解析式;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線經(jīng)過點A(3,2),B(0,1)和點C.
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點為P,點A關(guān)于對稱軸的對稱點為M,過M的直線交拋物線于另一點N(N在對稱軸右邊),交對稱軸于F,若,求點F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點G,使△BMA與△MBG相似?若存在,求點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形OABC在平面直角坐標(biāo)系xoy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O、A兩點,直線AC交拋物線于點D。
(1)求拋物線的解析式;
(2)求點D的坐標(biāo);
(3)若點M在拋物線上,點N在x軸上,是否存在以點A、D、M、N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1, 0)、B(4, 5)兩點,過點B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點M是拋物線上的一個點,直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點的四邊形是平行四邊形,求出點M的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)(m是常數(shù))
(1)求證:不論m為何值,該函數(shù)的圖像與x軸沒有公共點;
(2)把該函數(shù)的圖像沿x軸向下平移多少個單位長度后,得到的函數(shù)的圖像與x軸只有一個公共點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角坐標(biāo)系xOy中,正方形OCBA的頂點A,C分別在y軸,x軸上,點B坐標(biāo)為(6,6),拋物線y=ax2+bx+c經(jīng)過點A,B兩點,且3a-b=-1.
(1)求a,b,c的值;
(2)如果動點E,F(xiàn)同時分別從點A,點B出發(fā),分別沿A→B,B→C運動,速度都是每秒1個單位長度,當(dāng)點E到達(dá)終點B時,點E,F(xiàn)隨之停止運動,設(shè)運動時間為t秒,△EBF的面積為S.
①試求出S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②當(dāng)S取得最大值時,在拋物線上是否存在點R,使得以E,B,R,F(xiàn)為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com