【題目】如圖,下列能判定AB∥CD的條件有( )個.
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.

A.1
B.2
C.3
D.4

【答案】C
【解析】解:(1)利用同旁內(nèi)角互補判定兩直線平行,故(1)正確;(2)利用內(nèi)錯角相等判定兩直線平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,(2)錯誤;(3)利用內(nèi)錯角相等判定兩直線平行,故(3)正確;(4)利用同位角相等判定兩直線平行,故(4)正確.
∴正確的為(1)、(3)、(4),共3個;
故選:C.
在復(fù)雜的圖形中具有相等關(guān)系或互補關(guān)系的兩角首先要判斷它們是否是同位角、內(nèi)錯角或同旁內(nèi)角,被判斷平行的兩直線是否由“三線八角”而產(chǎn)生的被截直線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x2+5x+8=a(x+1)2+b(x+1)+c,則a= , b= , c=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市一月份的營業(yè)額為30萬元,三月份的營業(yè)額為56萬元.設(shè)每月的平均增長率為x,則可列方程為( )
A.56(1+x)2=30
B.56(1﹣x)2=30
C.30(1+x)2=56
D.30(1+x)3=56

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖(1), 為⊙的割線,直線與⊙有公共點, 且,

(1)求證: ; 直線是⊙的切線;

(2)如圖(2) , 作弦,使 連接AD、BC,若,求⊙的半徑;

(3)如圖(3),若⊙的半徑為,,,⊙上是否存在一點 , 使得有最小值?若存在,請求出這個最小值;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算錯誤的是( )
A.(﹣2x)3=﹣2x3
B.﹣a2a=﹣a3
C.(﹣x)9+(﹣x)9=﹣2x9
D.(﹣2a32=4a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣8)×3÷(﹣2)2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=2是方程x2﹣a2=0的一個根,則a的值是( )
A.2
B.﹣2
C.±2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某空調(diào)生產(chǎn)廠家想了解一批空調(diào)的質(zhì)量,把倉庫中的空調(diào)編上號,然后抽取了編號為5的倍數(shù)的空調(diào)進行檢驗,你認為這種調(diào)查方式________(填“合適”或“不合適”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PB為O的切線,B為切點,直線PO交于點E,F(xiàn),過點B作PO的垂線BA,垂足為點D,交O于點A,延長AO與O交于點C,連接BC,AF.

(1)求證:直線PA為O的切線;

(2)試探究線段EF,OD,OP之間的等量關(guān)系,并加以證明;

(3)若BC=6,tanF,求cosACB的值和線段PE的長.

查看答案和解析>>

同步練習(xí)冊答案