【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,已知格點四邊形ABCD(頂點是網格線的交點)和格點O

1)將四邊形ABCD先向左平移4個單位長度,再向下平移6個單位長度,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1,(點A,BC,D的對應點分別為點A1,B1C1,D1);

2)將四邊形ABCD繞點O逆時針旋轉90°,得到四邊形A2B2C2D2,畫出旋轉后的四邊形A2B2C2D2(點A、B,CD的對應點分別為點A2,B2C2,D2);

3)填空:點C2A1D1的距離為_______

【答案】1)如圖,四邊形A1B1C1D1即為所求.見解析;(2)如圖,四邊形A2B2C2D2即為所求.見解析;(3

【解析】

1)根據(jù)網絡結構找出點A、BC、D平移后的對應點A1、B1C1D1的位置,然后順次連接即可.

2)根據(jù)網絡結構找出點A、B、C、D繞點O逆時針旋轉90°的對應點A2、B2、C2、D2的位置,然后順次連接即可.

3)延長D1 A1,過C2點作延長線的垂線,垂線段的長度即為點C2A1D1的距離.

1)如圖,四邊形A1B1C1D1即為所求.

2)如圖,四邊形A2B2C2D2即為所求.

3)設點C2A1D1的距離為h.

h=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知:在矩形ABCD中,ABcm,AD9cm,點OA點出發(fā)沿ADacm/s的速度移向點D移動,以O為圓心,2cm長為半徑作圓,交射線ADM(點M在點O右側).同時點EC點出發(fā)沿CDcm/s的速度移向點D移動,過E作直線EFBDBCF,再把CEF沿著動直線EF對折,點C的對應點為點G 若在整過移動過程中EFG的直角頂點G能與點M重合.設運動時間為t0t≤3)秒.

1)求a的值;

2)在運動過程中,

①當直線FG與⊙O相切時,求t的值;

②是否存在某一時刻t,使點G恰好落在⊙O上(異于點M)?若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】京杭大運河是世界文化遺產.綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,DBA=60°,求該段運河的河寬(即CH的長).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1400多年前,我國隋代建造的石拱橋——趙州橋(如圖(1)),是我國古代人民勤勞與智慧的結晶.如圖(2)是它的簡化示意圖,主橋拱是,拱高(的中點到弦的距離)

1)在圖(2)(為圓心),用尺規(guī)作圖作出的中點(不要求寫作法,但保留作圖痕跡)

2)若,求主橋拱的跨度的長.(結果精確到參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在邊長為1個單位長度的小正方形組成的網格中,給出了格點四邊形 (頂點是網格線的交點).

1)請畫出四邊形關于直線對稱的四邊形(點的對應點分別為點);

2)若以點為位似中心,將四邊形放大到原來的2倍,請在該網格中畫出放大后的四邊形(點的對應點分別為點);

3)填空:__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ABC2ACB,BD平分∠ABCAC于點D

1)如圖(1),若AB3,AC5,求AD的長;

2)如圖(2),過點A分別作AC,BD的垂線,分別交BC,BD于點E,F

①求證:∠ABC=∠EAF;

②求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,一次函數(shù)的圖象與軸交于點,與軸交于點,二次函數(shù)的圖象經過,兩點,且與軸的負半軸交于點,動點在直線下方的二次函數(shù)圖象上.

1)求二次函數(shù)的表達式;

2)如圖1,連接,,設的面積為,求的最大值;

3)如圖2,過點于點,是否存在點,使得中的某個角恰好等于2倍?若存在,直接寫出點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸交于AB兩點,點P在函數(shù)的圖象上,若PAB為直角三角形,則滿足條件的點P的個數(shù)為( ).

A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以ABC的邊BC為直徑作⊙O,點A在⊙O上,點D在線段BC的延長線上,ADAB,∠D30°

1)求證:直線AD是⊙O的切線;

2)若直徑BC8,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案