如圖,在平面直角坐標系xOy中,點A、B坐標分別為(4,2)、(0,2),線段CD在于x軸上,CD=,點C從原點出發(fā)沿x軸正方向以每秒1個單位長度向右平移,點D隨著點C同時同速同方向運動,過點D作x軸的垂線交線段AB于點E、交OA于點G,連結(jié)CE交OA于點F.設(shè)運動時間為t,當E點到達A點時,停止所有運動.

(1)求線段CE的長;
(2)記S為RtΔCDE與ΔABO的重疊部分面積,試寫出S關(guān)于t的函數(shù)關(guān)系式及t的取值范圍;
(3)連結(jié)DF,
①當t取何值時,有?
②直接寫出ΔCDF的外接圓與OA相切時t的值.

(1)線段CE的長為;
(2)S=﹣t)2,t的取值范圍為:0≤t≤;
(3)①當t=時,DF=CD;②ΔCDF的外接圓與OA相切時t=

解析試題分析:(1)直接根據(jù)勾股定理求出CE的長即可;
(2)作FH⊥CD于H.,由AB∥OD,DE⊥OD,OB⊥OD可知四邊形ODEB是矩形,故可用t表示出AE及BE的長,由相似三角形的判定定理可得出△OCF∽△AEF,△ODG∽△AEG,由相似三角形的性質(zhì)可用t表示出CF及EG的長,F(xiàn)H∥ED可求出HD的長,由三角形的面積公式可求出S與t的關(guān)系式;
(3)①由(2)知CF=t,當DF=CD時,作DK⊥CF于K,則CK=CF=t,CK=CDcos∠DCE,由此可得出t的值;
②先根據(jù)勾股定理求出OA的長,由(2)知HD=(5﹣t),由相似三角形的判定定理得出Rt△AOB∽Rt△OFH,可用t表示出OF的長,因為當△CDF的外接圓與OA相切時,則OF為切線,OD為割線,由切割線定理可知OF2=OC•OD,故可得出結(jié)論.
試題解析:(1)∵在Rt△CDE中,CD=,DE=2,
∴CE=
(2)如圖1,作FH⊥CD于H.

∵AB∥OD,DE⊥OD,OB⊥OD,
∴四邊形ODEB是矩形,
∴BE=OD,
∵OC=t,
∴BE=OD=OC+CD=t+,
∴AE=AB﹣BE=4﹣(t+)=﹣t,
∵AB∥OD,
∴△OCF∽△AEF,△ODG∽△AEG,
,,
又∵CF+EF=5,DG+EG=4,
,,
∴CF=t,EG=,
∴EF=CE﹣CF=5﹣t,
∵FH∥ED,
,即HD=•CD=﹣t),
∴S=EG•HD=××﹣t)=﹣t)2,
t的取值范圍為:0≤t≤;
(3)①由(2)知CF=t,
如圖2,當DF=CD時,如圖作DK⊥CF于K,

則CK=CF=t,
∵CK=CDcos∠DCE,
t=3×,
解得:t=;
∴當t=時,DF=CD;
②∵點A,B坐標分別為(8,4),(0,4),
∴AB=8,OB=4,
∴OA==4
∵由(2)知HD=(5﹣t),
∴OH=t+3﹣(5﹣t)=,
∵∠A+∠AOB=∠AOD+∠AOB=90°,
∴∠A=∠AOD,
∴Rt△AOB∽Rt△OFH,
,
解得OF=
∵當△CDF的外接圓與OA相切時,則OF為切線,OD為割線,
∴OF2=OC•OD,即(2=t(t+3),得t=
考點:相似形綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

△ABC中,D、E分別是邊AB與AC的中點,BC=4,下面四個結(jié)論:①DE=2;②△ADE∽△ABC;③△ADE的面積與△ABC的面積之比為 1:4;④△ADE的周長與△ABC的周長之比為 1:4;其中正確的有     .(只填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,AB=AC,作以AB為直徑的⊙O與邊BC交于點D,過點D作⊙O的切線,分別交AC、AB的延長線于點E、F.
(1)求證:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC是一張銳角三角形的硬紙片,AD是邊BC上的高,BC=40 cm,AD=30 cm,從這張硬紙片上剪下一個長HG是寬HE的2倍的矩形EFGH,使它的一邊EF在BC上,頂點G、H分別在AC、AB上,AD與HG的交點為M. 求矩形的長與寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知矩形OABC的頂點O(0,0)、A(4,0)、B(4,-3).動點P從O出發(fā),以每秒1個單位的速度,沿射線OB方向運動.設(shè)運動時間為t秒.
(1)求P點的坐標(用含t的代數(shù)式表示);
(2)如圖,以P為一頂點的正方形PQMN的邊長為2,且邊PQ⊥y軸.設(shè)正方形PQMN與矩形OABC的公共部分面積為S,當正方形PQMN與矩形OABC無公共部分時,運動停止.
①當t<4時,求S與t之間的函數(shù)關(guān)系式;
②當t>4時,設(shè)直線MQ、MN分別交矩形OABC的邊BC、AB于D、E,問:是否存在這樣的t,使得△PDE為直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由點A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連結(jié)PQ。若設(shè)運動時間為t(s)(0<t<2),解答下列問題:

(1)當t為何值時?PQ//BC?
(2)設(shè)△APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?
(3)是否存在某一時刻t,使線段PQ恰好把△ABC的周長和面積同時平分?若存在求出此時t的值;若不存在,說明理由。
(4)如圖2,連結(jié)PC,并把△PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時刻t,使四邊形PQP'C為菱形?若存在求出此時t的值;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知AD⊥BC,BE=CE,∠ABC=2∠C,BF為∠B的平分線.求證:AB=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設(shè)運動的時間為t秒.

(1)當P點在邊AB上運動時,點Q的橫坐標x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)如果點P、Q保持原速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設(shè)運動的時間為t秒.

(1)當P點在邊AB上運動時,點Q的橫坐標x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)如果點P、Q保持原速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案