【題目】某校了解九年級(jí)學(xué)生近兩個(gè)月“推薦書目”的閱讀情況,隨機(jī)抽取了該年級(jí)的部分學(xué)生,調(diào)查了他們每人“推薦書目”的閱讀本數(shù).設(shè)每名學(xué)生的閱讀本數(shù)為n,并按以下規(guī)定分為四檔:當(dāng)n<3時(shí),為“偏少”;當(dāng)3≤n<5時(shí),為“一般”;當(dāng)5≤n<8時(shí),為“良好”;當(dāng)n≥8時(shí),為“優(yōu)秀”.將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成不完整的統(tǒng)計(jì)圖表:
閱讀本數(shù)n(本) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
人數(shù)(名) | 1 | 2 | 6 | 7 | 12 | x | 7 | y | 1 |
請根據(jù)以上信息回答下列問題:
(1)分別求出統(tǒng)計(jì)表中的x、y的值;
(2)估計(jì)該校九年級(jí)400名學(xué)生中為“優(yōu)秀”檔次的人數(shù);
(3)從被調(diào)查的“優(yōu)秀”檔次的學(xué)生中隨機(jī)抽取2名學(xué)生介紹讀書體會(huì),請用列表或畫樹狀圖的方法求抽取的2名學(xué)生中有1名閱讀本數(shù)為9的概率.
【答案】(1)11,3;(2)32;(3).
【解析】
(1)先根據(jù)“一般”的人數(shù)和百分比求出被調(diào)查的總?cè)藬?shù),然后求出“良好”類的人數(shù)即可求出x的值,用總?cè)藬?shù)減去其它各類的人數(shù)即可求出y的值;
(2)利用400ד優(yōu)秀”所占的百分比計(jì)算即可;(3)畫樹狀圖或者列表得到所以等可能的結(jié)果為12種,而抽取2名學(xué)生中有1名閱讀本數(shù)為9的有6種情況,然后利用概率公式計(jì)算即可.
解:(1)由表可知被調(diào)查學(xué)生中“一般”檔次的有13人,所占比例是26%,所以共調(diào)查的學(xué)生13÷26%=50,
則調(diào)查學(xué)生中“良好”檔次的人數(shù)為50×60%=30,
∴x=30﹣(12+7)=11,
y=50﹣(1+2+6+7+12+11+7+1)=3.
(2)由樣本數(shù)據(jù)可知“優(yōu)秀”檔次所占的百分比為=8%,
∴估計(jì)九年級(jí)400名學(xué)生中為優(yōu)秀檔次的人數(shù)為400×8%=32;
(3)用A、B、C表示閱讀本數(shù)是8的學(xué)生,用D表示閱讀9本的學(xué)生,畫樹狀圖得到:
或列表:
由列表可知,共12種等可能的結(jié)果,其中所抽取的2名學(xué)生中有1名閱讀本數(shù)為9的有6種,
所以抽取的2名學(xué)生中有1名閱讀本數(shù)為9的概率為=;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)下崗工人再就業(yè),某地市政府規(guī)定,企業(yè)按成本價(jià)提供產(chǎn)品給下崗人員自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).老李按照政策投資銷售本市生產(chǎn)的一種兒童面條.已知這種兒童面條的成本價(jià)為每袋12元,出廠價(jià)為每袋16元,每天銷售量(袋)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)老李在開始創(chuàng)業(yè)的第1天將銷售單價(jià)定為17元,那么政府這一天為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)老李獲得的利潤為(元),當(dāng)銷售單價(jià)為多少元時(shí),每天可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種面條的銷售單價(jià)不得高于24元,如果老李想要每天獲得的利潤不低于216元,那么政府每天為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑.某校為了了解學(xué)生課外閱讀情況,隨機(jī)抽查了名學(xué)生,統(tǒng)計(jì)他們平均每天課外閱讀時(shí)間.根據(jù)的長短分為,,,四類,下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計(jì)圖表.請根據(jù)圖表中提供的信息,解答下面的問題:
(1)本次調(diào)查的樣本容量為_______;
(2)求表格中的的值,并在圖中補(bǔ)全條形統(tǒng)計(jì)圖(如圖);
(3)該,F(xiàn)有名學(xué)生,請你估計(jì)該校共有多少名學(xué)生的課外閱讀時(shí)間不少于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在矩形AOBC中,OB=4,OA=3,分別以OB、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系,F是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),過F點(diǎn)的反比例函數(shù)y(k>0)的圖象與AC邊交于點(diǎn)E,將△CEF沿E對(duì)折后,C點(diǎn)恰好落在OB上的點(diǎn)D處,則k的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作☉O,交BD于點(diǎn)E,連接CE,過D作DFAB于點(diǎn)F,∠BCD=2∠ABD.
(1)求證:AB是☉O的切線;
(2)若∠A=60°,DF=,求☉O的直徑BC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)利用數(shù)學(xué)知識(shí)測量建筑物DEFG的高度.他從點(diǎn)出發(fā)沿著坡度為的斜坡AB步行26米到達(dá)點(diǎn)B處,用測角儀測得建筑物頂端的仰角為37°,建筑物底端的俯角為30°,若AF為水平的地面,側(cè)角儀豎直放置,其高度BC=1.6米,則此建筑物的高度DE約為(精確到米,參考數(shù)據(jù):,)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工廠需加工生產(chǎn) 550 臺(tái)某種機(jī)器,已知甲工廠每天加工生產(chǎn)的機(jī)器臺(tái)數(shù)是乙工廠每天加工 生產(chǎn)的機(jī)器臺(tái)數(shù)的 1.5 倍,并且加工生產(chǎn) 240 臺(tái)這種機(jī)器甲工廠需要的時(shí)間比乙工廠需要的時(shí)間少 4 天
(1)求甲、乙兩個(gè)工廠每天分別可以加工生產(chǎn)多少臺(tái)這種機(jī)器?
(2)若甲工廠每天加工的生產(chǎn)成本是 3 萬元,乙工廠每天加工生產(chǎn)的成本是 2.4 萬元,要使得加工生 產(chǎn)這批機(jī)器的總成本不得高于 60 萬元,至少應(yīng)該安排甲工廠生產(chǎn)多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一個(gè)正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個(gè)正方形繞其中心最少旋轉(zhuǎn) 45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角頂點(diǎn)P1(3,3),P2,P3,…均在直線 上.設(shè)△P1OA1,△P2A1A2,△P3A2A3,…的面積分別為 S1,S2,S3,…,依據(jù)圖形所反映的規(guī)律,S2020=____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com