【題目】[問題提出]

如圖①,在ABC中,若AB6,AC4,求BC邊上的中線AD的取值范圍.

[問題解決]

解決此問題可以用如下方法,延長AD到點E使DEAD,再連結(jié)BE(或?qū)?/span>ACD繞著點D逆時針裝轉(zhuǎn)180°得到EBD),把AB、AC2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷,由此得出中線AD的取值范圍是   

[應(yīng)用]

如圖②,如圖,在ABC中,D為邊BC的中點,已知AB5,AC3AD2.求BC的長

[拓展]

如圖③,在ABC中,∠A90°,點D是邊BC的中點,點E在邊AB上,過點DDFDE交邊AC于點F,連結(jié)EF,已知BE4,CF5,則EF的長為   

【答案】(1)1<AD<5;(2)2;(3)

【解析】

證明,再根據(jù)三角形三邊關(guān)系求得AE的取值范圍,進(jìn)而得結(jié)論;
延長ADE,使得,連接BE,證明,再證明,由勾股定理求得BD,進(jìn)而得BC
延長FDG,使得,連接BGEG,證明,得,再證明,由勾股定理求得EG,由線段垂直平分線性質(zhì)得EF

解:中,
,
,
,
,,

,
故答案為
延長ADE,使得,連接BE,如圖

中,
,

,,
,
,
,
;
延長FDG,使得,連接BG,EG,如圖,

中,

,
,
,

,
,
,
,

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩個港口相距100海里,港口B在港口A的北偏東31°方向上,有一艘船從A港口出發(fā),沿北偏西44°方向勻速行駛3小時后,到達(dá)位于B港口南偏西76°方向的C處.求此船行駛的速度(結(jié)果精確到1海里/時,參考數(shù)據(jù):≈1.414,≈1.732≈2.449

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年永州市初中體育水平測試進(jìn)行改革,增加了自選項目,學(xué)生可以從籃球運球、足球運球、排球向上墊球三項中必須選一項,另外從一分鐘跳繩、仰臥起坐(女)或引體向上(男)、原地正面擲實心球、立定跳遠(yuǎn)中必須選一項.現(xiàn)對永州市某校的選考項目情況進(jìn)行調(diào)查,對調(diào)查結(jié)果進(jìn)行了分析統(tǒng)計并制作了兩幅統(tǒng)計圖:

1)補全條形統(tǒng)計圖;

2)求抽查的這些男生的體育測試平均分;

3)若該校準(zhǔn)備從這次體育測試成績好的生中選出10名參加全市運動會.現(xiàn)在有19名學(xué)生報名,小明是這19名同學(xué)之一,小明在知道自己這次成績后還需知道這19名學(xué)生成績的( ),就能知道自己能不能參加市運動會.

A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某飛機(jī)于空中探測某座山的高度,在點A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時觀測目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機(jī)摸出一個球,這個球是白球的概率為

1)袋子中白球的個數(shù)是   個;

2)隨機(jī)模出一個球后,放回并攪勻,再隨機(jī)摸出一個球,請用列表或通過樹狀圖的方法,求兩次摸到的小球顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】)如圖①已知四邊形中,,BC=b,,求:

①對角線長度的最大值;

②四邊形的最大面積;(用含,的代數(shù)式表示)

)如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,請你利用所學(xué)知識探索它的最大面積(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個交點A、B的橫坐標(biāo)分別為﹣3、1,與y軸交于點C,下面四個結(jié)論:①16a+4b+c<0;②P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③c=﹣3a;④△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請將正確結(jié)論的序號全部填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.

(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若OCPPDA的面積比為1:4,求邊CD的長.

(2)如圖2,在(1)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點PA不重合),動點N在線段AB的延長線上,且BN=PM,連接MNPB于點F,作MEBP于點E.試問當(dāng)動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.

查看答案和解析>>

同步練習(xí)冊答案