【題目】在菱形ABCD中,AC=2,BD=2,AC,BD相交于點O.邊AB=_____,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉,其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F,連接EF與AC相交于點G.旋轉過程中,當點E為邊BC的四等分點時(BE>CE),CG=_____.
【答案】2
【解析】
根據(jù)菱形的性質,確定△AOB為直角三角形,然后利用勾股定理求出邊AB的長度;證明△ABE≌△ACF,得到AE=AF,再根據(jù)已知條件∠EAF=60°,可以判定△AEF是等邊三角形;得出∠AEF=60°,證明△CAE∽△CFG,由對應邊的比例關系求出CG的長度.
解:∵四邊形ABCD是菱形,
∴AC⊥BD,AB=BC=CD=AD,
∴△AOB為直角三角形,且OA=AC=1,OB=BD=.
在Rt△AOB中,由勾股定理得:AB===2.
∵AB=BC=AC=2,
∴△ABC與△ACD均為等邊三角形,
∴∠BAC=∠BAE+∠CAE=60°,∠ACE=∠EBA=∠FCA=60°,
又∵∠EAF=∠CAF+∠CAE=60°,
∴∠BAE=∠CAF.
在△ABE與△ACF中,,
∴△ABE≌△ACF(ASA),
∴BE=CF,AE=AF,
∴△AEF是等腰三角形,
又∵∠EAF=60°,
∴△AEF是等邊三角形.
∴∠AEF=60°,
∵BC=2,E為為邊BC的四等分點,且BE>CE,
∴CE=,BE=.
∴CF=BE=,
∵∠EAC+∠AEG+∠EGA=∠GFC+∠FCG+∠CGF=180°,∠AEG=∠FCG=60°,∠EGA=∠CGF,
∴∠EAC=∠GFC.
又∵∠ACE=∠FCG=60°,
∴△CAE∽△CFG,
∴=,即=,
解得:CG=;
故答案為2; .
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了“你最喜愛的電視節(jié)目”的問卷調查(每人只填寫一項),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖(如圖所示),根據(jù)要求回答下列問題:
(1)本次問卷調查共調查了________名觀眾;圖②中最喜愛“新聞節(jié)目”的人數(shù)占調查總人數(shù)的百分比為________;
(2)補全圖①中的條形統(tǒng)計圖;
(3)現(xiàn)有最喜愛“新聞節(jié)目”(記為),“體育節(jié)目”(記為),“綜藝節(jié)目”(記為),“科普節(jié)目”(記為)的觀眾各一名,電視臺要從四人中隨機抽取兩人參加聯(lián)誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛“”和“”兩位觀眾的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將菱形紙片沿對角線剪開,得到和,固定,并把與疊放在一起.
操作:如圖,將的頂點固定在的邊上的中點處,繞點在邊上方左右旋轉,設旋轉時交于點(點不與點重合),交于點(點不與點重合).
求證:
操作:如圖,的頂點在的邊上滑動(點不與、點重合),且始終經(jīng)過點,過點作,交于點,連接.
探究:________.請予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線(為常數(shù),)經(jīng)過點,點是軸正半軸上的動點.
(Ⅰ)當時,求拋物線的頂點坐標;
(Ⅱ)點在拋物線上,當,時,求的值;
(Ⅲ)點在拋物線上,當的最小值為時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是一種簡易臺燈,在其結構圖(2)中燈座為△ABC(BC伸出部分不計),A、C、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長為40cm,燈管DE長為15cm.
(1)求DE與水平桌面(AB所在直線)所成的角;
(2)求臺燈的高(點E到桌面的距離,結果精確到0.1cm).
(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為( 。
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 A,B 的坐標分別為(1,4)和(4,4), 拋物線 y=a(x﹣m)2+n 的頂點在線段 AB 上運動(拋物線隨頂點一起平移),與 x 軸交于 C、D 兩點(C 在 D 的左側),點 C 的橫坐標最小值為﹣3, 則點 D 的橫坐標最大值為( )
A.﹣3B.1C.5D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A為∠POQ的邊OQ上一點,以A為頂點的∠MAN的兩邊分別交射線OP于M、N兩點,且∠MAN=∠POQ=α(α為銳角).當∠MAN以點A為旋轉中心,AM邊從與AO重合的位置開始,按逆時針方向旋轉(∠MAN保持不變)時,設OM=x,ON=y(y>x≥0),△AOM的面積為s,且cosα,OA是方程2z2﹣21z+10=0的兩根.
(1)當∠MAN旋轉30°時,求點N移動的距離;
(2)求證:AN2=ONMN;
(3)試求y與x的函數(shù)關系及自變量的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的中點,過A,C,D三點的圓交BA的延長線于點E,連接EC.
(1)求證:∠E=90°;
(2)若AB=6,BC=10,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com