【題目】某藍(lán)莓種植生產(chǎn)基地產(chǎn)銷兩旺,采摘的藍(lán)莓部分加工銷售,部分直接銷售,且當(dāng)天都能銷售完,直接銷售是40/,加工銷售是130/(不計損耗).已知基地雇傭20名工人,每名工人只能參與采摘和加工中的一項工作,每人每天可以采摘70斤或加工35設(shè)安排x名工人采摘藍(lán)莓,剩下的工人加工藍(lán)莓

(1)若基地一天的總銷售收入為y,yx的函數(shù)關(guān)系式;

(2)試求如何分配工人,才能使一天的銷售收入最大?并求出最大值

【答案】(1)y=-350x+63 000.(2)安排7名工人進(jìn)行采摘,13名工人進(jìn)行加工,才能使一天的收入最大最大收入為60 550元.

【解析】試題(1)根據(jù)題意可知x人參加采摘藍(lán)莓,則(20-x)人參加加工,可分別求出直接銷售和加工銷售的量,然后乘以單價得到收入錢數(shù),列出函數(shù)的解析式;

2)根據(jù)采摘量和加工量可求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性可得到分配方案,并且求出其最值.

試題解析:(1)根據(jù)題意得:.

(2)因為,解得,又因為為正整數(shù),且.

所以,且為正整數(shù).

因為,所以的值隨著的值增大而減小,

所以當(dāng)時,取最大值,最大值為.

答:安排7名工人進(jìn)行采摘,13名工人進(jìn)行加工,才能使一天的收入最大,最大收入為60550.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【發(fā)現(xiàn)證明】
如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.

(1)【類比引申】如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;

(2)【聯(lián)想拓展】如圖4,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般情況下,不成立,但有些數(shù)可以使得它成立,例如:a1b2.我們稱使得成立的一對數(shù)a,b相伴數(shù)對,記為(a,b).

1)判斷數(shù)對(﹣2,1),(3,3)是否是相伴數(shù)對;

2)若(k,﹣1)是相伴數(shù)對,求k的值;

3)若(4,m)是相伴數(shù)對,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC與△ABC′在平面直角坐標(biāo)系中的位置如圖.

1)分別寫出下列各點的坐標(biāo): A   ;B   ;C   

2)若點Pa,b)是△ABC內(nèi)部一點,則平移后△ABC′內(nèi)的對應(yīng)點P′的坐標(biāo)為   ;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2,D、E分別為ABAC的中點,延長BC至點F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小明和小穎相約到樂山大佛景區(qū)參觀.小明乘私家車從成都出發(fā)1小時后,小穎乘坐高鐵從成都出發(fā),先到樂山高鐵站,然后轉(zhuǎn)乘出租車到樂山大佛景區(qū)(換車時間忽略不計),兩人恰好同時到達(dá)景區(qū).他們離開成都的距離y(千米)與時間t(小時)的關(guān)系如圖所示,請結(jié)合圖象解決下面問題.

1)高鐵的平均速度是每小時多少千米?

2)當(dāng)小穎到達(dá)樂山高鐵站時,小明距離樂山大佛景區(qū)還有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,△ABC的三個頂點A、BC都在格點上.

1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△A1B1C1;

2)在直線l上找出一點P,使得|PAPC|的值最大;(保留作圖痕跡并標(biāo)上字母P

3)在直線l上找出一點Q,使得QA+QC1的值最;(保留作圖痕跡并標(biāo)上字母Q

4)在正方形網(wǎng)格中存在   個格點,使得該格點與B、C兩點構(gòu)成以BC為底邊的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校要建一個面積是81平方米的草坪,草坪周圍用鐵柵欄圍繞,現(xiàn)有兩種方案:有人建議建成正方形,也有人建議建成圓形,如果從節(jié)省鐵柵欄費用的角度考慮(柵欄周長越小,費用越少),你選擇哪種方案?請說明理由.(π3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線:y=ax2+bx+c(a>0)經(jīng)過A(﹣1,1),B(2,4)兩點,頂點坐標(biāo)為(m,n),有下列結(jié)論: ①b<1;②c<2;③0<m< ;④n≤1.
則所有正確結(jié)論的序號是

查看答案和解析>>

同步練習(xí)冊答案