【題目】如圖,已知拋物線y=-x2+mx+3與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),拋物線與直線y=-x+3交于C、D兩點(diǎn).連接BD、AD.

(1)求m的值.

(2)拋物線上有一點(diǎn)P,滿足S△ABP=4S△ABD,求點(diǎn)P的坐標(biāo).

【答案】(1)m=2 (2)P(1+,-9)或P(1-,-9)

【解析】試題分析:(1)利用待定系數(shù)法即可解決問題;

(2)利用方程組首先求出點(diǎn)D坐標(biāo).由面積關(guān)系,推出點(diǎn)P的縱坐標(biāo),再利用待定系數(shù)法求出點(diǎn)P的坐標(biāo)即可.

試題解析:(1)∵拋物線y=-x2+mx+3過(3,0),

∴0=-9+3m+3,

∴m=2

2)由,得 ,

D-),

∵SABP=4SABD,

AB×|yP|=4×AB×,

∴|yP|=9,yP=±9,

當(dāng)y=9時,-x2+2x+3=9,無實(shí)數(shù)解,

當(dāng)y=-9時,-x2+2x+3=-9,解得:x1=1+,x2=1-

P1+,-9)或P1-,-9).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國高速公路發(fā)展迅速,據(jù)報道,到目前為止,全國高速公路總里程約為10.8萬千米,10.8萬用科學(xué)記數(shù)法表示為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O(0,0),A(0,1)是正方形的兩個頂點(diǎn),以對角線OA1為邊作正方形 OAA1B 再以正方形OA1A2B1的對角線OA2作正方形OA2A3B2 , …,依此規(guī)律,則點(diǎn)A8的坐標(biāo)是( )

A.(﹣8,0)
B.(0,8)
C.(0,8
D.(0,16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正n邊形的一個內(nèi)角為135°,那么n的值為( 。

A.12B.10C.8D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多邊形每一個內(nèi)角都等于150°,則從此多邊形一個頂點(diǎn)發(fā)出的對角線有(  。

A. 7 B. 8 C. 10 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分6分)

如圖,在平面直角坐標(biāo)系中,RtABC三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為A(-1,3),B(-3,1),C(-1,1).請解答下列問題:

畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出B1的坐標(biāo).

畫出A1B1C1繞點(diǎn)C1順時針旋轉(zhuǎn)90°后得到的A2B2C1,并求出點(diǎn)A1走過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分7分)

某校在藝術(shù)節(jié)選拔節(jié)目過程中,從備選的街舞、爵士、民族拉丁四種類型舞蹈中,選擇一種學(xué)生最喜愛的舞蹈,為此,隨機(jī)調(diào)查了本校的部分學(xué)生,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(每位學(xué)生只選擇一種類型),根據(jù)統(tǒng)計圖表的信息,解答下列問題:

本次抽樣調(diào)查的學(xué)生人數(shù)及a、b的值.

將條形統(tǒng)計圖補(bǔ)充完整.

若該校共有1500名學(xué)生,試估計全校喜歡拉丁舞蹈的學(xué)生人數(shù).

類型

民族

拉丁

爵士

街舞

據(jù)點(diǎn)百分比

a

30%

b

15%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果零上15℃記作+15℃,那么零下3℃可記為( )

A.﹣3℃B.+3℃C.﹣12℃D.12℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,分別是的中點(diǎn).

(1)求證:,

(2)連接,若,求的長.

查看答案和解析>>

同步練習(xí)冊答案