【題目】如圖,在平行四邊形中,,上一動點(diǎn),過的垂線交,將折疊得到,延長,連接

(1)求證:;

(2)當(dāng)時(shí),證明是等腰三角形;

(3),求的長.

【答案】(1)見解析;(2)見解析; (3)

【解析】

(1)先證BD、F在一條直線上,再證明∠PDG=∠BEG,接著證∠PDG=∠F得到PD=PF,再證∠ADP =∠DHP得到PD=PH,用等量替換即刻得到答案;
(2)先根據(jù)以及得到,再證明以及得到AD=AP,即可得到是等腰三角形;

(3)先根據(jù) ,得到,再計(jì)算DP的長度,利用勾股定理即可得到DE的長.

解:(1四邊形ABCD是平行四邊形,
∴AD∥BC
∴∠A+∠PBC=180°,
∵∠A=45°,
∴∠PBC=135°
由折疊知,∠PBF=∠PBE=135°,

∴∠ABD=45°,
∴∠ABD+∠PBF=180°,
點(diǎn)FDB的延長線上,

即:B、D、F在一條直線上,

如圖,把PEDF的交點(diǎn)記為G,

∵∠ABD=45°,∠PBC=135°,

∴∠DBE=90°,

∴∠BEG+∠BGE=90°∠BGE=∠PGD,

的垂線交,
∴∠PDG+∠PGD=90°

∴∠PDG=∠BEG(等量替換),

∵∠BEG=∠F

∴∠PDG=∠F(等量替換),

∴PD=PF
∵∠GDP+∠ADP=90°,∠F+∠DHP=90°
∴∠ADP =∠DHP(等量替換),
∴PD=PH,
∴PF=PH

(2)根據(jù)以及得到:

,

,

;

(3)∵, ,

(勾股定理),

,

根據(jù)等面積法: ,

,

,

∵△DPE是等腰直角三角形,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AE平分∠BACBC于點(diǎn)EDAB邊上一動點(diǎn),連接CDAE于點(diǎn)P,連接BP.已知AB =6cm,設(shè)B,D兩點(diǎn)間的距離為xcm,B,P兩點(diǎn)間的距離為y1cm,A,P兩點(diǎn)間的距離為y2cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

0.00

2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x),并畫出函數(shù)y1的圖象;

3)結(jié)合函數(shù)圖象,回答下列問題:

①當(dāng)AP=2BD時(shí),AP的長度約為 cm

②當(dāng)BP平分∠ABC時(shí),BD的長度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過時(shí),材料溫度降為600℃.如圖,煅燒時(shí)溫度與時(shí)間成一次函敷關(guān)系:鍛造時(shí),溫度與時(shí)間成反比例函數(shù)關(guān)系。已知該材料初始溫度是32℃.

1)分別求出材料煅燒和鍛造時(shí)的函數(shù)關(guān)系式,并且寫出自變量的取值范圍;

2)根據(jù)工藝要求,當(dāng)材料溫度低于400℃時(shí),須停止操作.那么鍛造的操作時(shí)間最多有多長?.

3)如果加工每個(gè)零件需要鍛造12分鐘,并且當(dāng)材料溫度低于400℃時(shí),需要重新煅燒.通過計(jì)算說明加工第一個(gè)零件,一共需要多少分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過點(diǎn)A、D⊙O分別交邊AB、AC于點(diǎn)E、F

1)求證:BC⊙O的切線;

2)若BE=16sinB=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,邊上一動點(diǎn)(不與重合),連接, ,使,于點(diǎn).當(dāng)為等腰三角形時(shí),則的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,點(diǎn)EBC上,AE=AD,DFAE,垂足為F

1)求證.DF=AB

2)若∠FDC=30°,且AB=4,求AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,將矩形對折,得到折痕;沿著折疊,點(diǎn)的對應(yīng)點(diǎn)為的交點(diǎn)為;再沿著折疊,使得重合,折痕為,此時(shí)點(diǎn)的對應(yīng)點(diǎn)為.下列結(jié)論:是直角三角形:②點(diǎn)在同一條直線上;;;⑤點(diǎn)的外心,其中正確的個(gè)數(shù)為(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)生態(tài)文明建設(shè),甲、乙兩工程隊(duì)同時(shí)為嶗山區(qū)的兩條綠化帶鋪設(shè)草坪.兩隊(duì)所鋪設(shè)草坪的面積(米)與施工時(shí)間(時(shí))之間關(guān)系的近似可以用此圖象描述.請結(jié)合圖象解答下列問題:

(1)從工作2小時(shí)開始,施工方從乙隊(duì)抽調(diào)兩人對草坪進(jìn)行灌溉,乙隊(duì)速度有所降低,求乙隊(duì)在工作2小時(shí)后的函數(shù)關(guān)系式;

(2)求乙隊(duì)降速后,何時(shí)鋪設(shè)草坪面積為甲隊(duì)的

(3)乙隊(duì)降速后,甲乙兩隊(duì)鋪設(shè)草坪速度之比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為了加強(qiáng)社區(qū)居民對新型冠狀病非肺炎防護(hù)知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識,并鼓勵(lì)社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷,社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取名人員的答卷成績,并對他們的成績(單位:分)進(jìn)行統(tǒng)計(jì)、分析,過程如下:

收集數(shù)據(jù)

甲小區(qū):

乙小區(qū):

整理數(shù)據(jù)

成績(分)

甲小區(qū)

乙小區(qū)

分析數(shù)據(jù)

統(tǒng)計(jì)量

平均數(shù)

中位教

眾數(shù)

甲小區(qū)

乙小區(qū)

應(yīng)用數(shù)據(jù)

1)填空:_ _;

2)若甲小區(qū)共有人參與答卷,請估計(jì)甲小區(qū)成績大于分的人數(shù);

3)社區(qū)管理員看完統(tǒng)計(jì)數(shù)據(jù),認(rèn)為甲小區(qū)對新型冠狀病毒肺炎防護(hù)知識掌握更好,請你寫出社區(qū)管理員的理由(至少寫出一條)

查看答案和解析>>

同步練習(xí)冊答案