【題目】如圖,在平行四邊形中,,,是上一動點(diǎn),過作的垂線交于,將折疊得到,延長交于,連接.
(1)求證:;
(2)當(dāng)時(shí),證明是等腰三角形;
(3)若,,求的長.
【答案】(1)見解析;(2)見解析; (3)
【解析】
(1)先證B、D、F在一條直線上,再證明∠PDG=∠BEG,接著證∠PDG=∠F得到PD=PF,再證∠ADP =∠DHP得到PD=PH,用等量替換即刻得到答案;
(2)先根據(jù)以及得到∽,再證明以及得到AD=AP,即可得到是等腰三角形;
(3)先根據(jù), ,得到,再計(jì)算DP的長度,利用勾股定理即可得到DE的長.
解:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠A+∠PBC=180°,
∵∠A=45°,
∴∠PBC=135°,
由折疊知,∠PBF=∠PBE=135°,
∵,
∴∠ABD=45°,
∴∠ABD+∠PBF=180°,
∴點(diǎn)F在DB的延長線上,
即:B、D、F在一條直線上,
如圖,把PE與DF的交點(diǎn)記為G,
∵∠ABD=45°,∠PBC=135°,
∴∠DBE=90°,
∴∠BEG+∠BGE=90°,∠BGE=∠PGD,
又∵過作的垂線交于,
∴∠PDG+∠PGD=90°,
∴∠PDG=∠BEG(等量替換),
又∵∠BEG=∠F,
∴∠PDG=∠F(等量替換),
∴PD=PF,
∵∠GDP+∠ADP=90°,∠F+∠DHP=90°,
∴∠ADP =∠DHP(等量替換),
∴PD=PH,
∴PF=PH;
(2)根據(jù)以及得到:
∽,
∴,
∴
∴,
∴
∴;
(3)∵, ,,
∴
∴(勾股定理),
又∵,
∴,
作于,
根據(jù)等面積法: ,
∴
∴,
∴ ,
∴,
∴,
又∵△DPE是等腰直角三角形,
∴,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AE平分∠BAC交BC于點(diǎn)E,D是AB邊上一動點(diǎn),連接CD交AE于點(diǎn)P,連接BP.已知AB =6cm,設(shè)B,D兩點(diǎn)間的距離為xcm,B,P兩點(diǎn)間的距離為y1cm,A,P兩點(diǎn)間的距離為y2cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 2.49 | 2.64 | 2.88 | 3.25 | 3.80 | 4.65 | 6.00 |
y2/cm | 4.59 | 4.24 | 3.80 | 3.25 | 2.51 | 0.00 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x,),并畫出函數(shù)y1,的圖象;
(3)結(jié)合函數(shù)圖象,回答下列問題:
①當(dāng)AP=2BD時(shí),AP的長度約為 cm;
②當(dāng)BP平分∠ABC時(shí),BD的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過時(shí),材料溫度降為600℃.如圖,煅燒時(shí)溫度與時(shí)間成一次函敷關(guān)系:鍛造時(shí),溫度與時(shí)間成反比例函數(shù)關(guān)系。已知該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時(shí)與的函數(shù)關(guān)系式,并且寫出自變量的取值范圍;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于400℃時(shí),須停止操作.那么鍛造的操作時(shí)間最多有多長?.
(3)如果加工每個(gè)零件需要鍛造12分鐘,并且當(dāng)材料溫度低于400℃時(shí),需要重新煅燒.通過計(jì)算說明加工第一個(gè)零件,一共需要多少分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,O為AB上一點(diǎn),經(jīng)過點(diǎn)A、D的⊙O分別交邊AB、AC于點(diǎn)E、F.
(1)求證:BC是⊙O的切線;
(2)若BE=16,sinB=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上一動點(diǎn)(不與、重合),連接, 作,使,交于點(diǎn).當(dāng)為等腰三角形時(shí),則的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點(diǎn)E在BC上,AE=AD,DF⊥AE,垂足為F.
(1)求證.DF=AB;
(2)若∠FDC=30°,且AB=4,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,將矩形對折,得到折痕;沿著折疊,點(diǎn)的對應(yīng)點(diǎn)為與的交點(diǎn)為;再沿著折疊,使得與重合,折痕為,此時(shí)點(diǎn)的對應(yīng)點(diǎn)為.下列結(jié)論:①是直角三角形:②點(diǎn)在同一條直線上;③;④;⑤點(diǎn)是的外心,其中正確的個(gè)數(shù)為( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推進(jìn)生態(tài)文明建設(shè),甲、乙兩工程隊(duì)同時(shí)為嶗山區(qū)的兩條綠化帶鋪設(shè)草坪.兩隊(duì)所鋪設(shè)草坪的面積(米)與施工時(shí)間(時(shí))之間關(guān)系的近似可以用此圖象描述.請結(jié)合圖象解答下列問題:
(1)從工作2小時(shí)開始,施工方從乙隊(duì)抽調(diào)兩人對草坪進(jìn)行灌溉,乙隊(duì)速度有所降低,求乙隊(duì)在工作2小時(shí)后與的函數(shù)關(guān)系式;
(2)求乙隊(duì)降速后,何時(shí)鋪設(shè)草坪面積為甲隊(duì)的?
(3)乙隊(duì)降速后,甲乙兩隊(duì)鋪設(shè)草坪速度之比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了加強(qiáng)社區(qū)居民對新型冠狀病非肺炎防護(hù)知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識,并鼓勵(lì)社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷,社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取名人員的答卷成績,并對他們的成績(單位:分)進(jìn)行統(tǒng)計(jì)、分析,過程如下:
收集數(shù)據(jù)
甲小區(qū):
乙小區(qū):
整理數(shù)據(jù)
成績(分) | ||||
甲小區(qū) | ||||
乙小區(qū) |
分析數(shù)據(jù)
統(tǒng)計(jì)量 | 平均數(shù) | 中位教 | 眾數(shù) |
甲小區(qū) | |||
乙小區(qū) |
應(yīng)用數(shù)據(jù)
(1)填空:_ _;
(2)若甲小區(qū)共有人參與答卷,請估計(jì)甲小區(qū)成績大于分的人數(shù);
(3)社區(qū)管理員看完統(tǒng)計(jì)數(shù)據(jù),認(rèn)為甲小區(qū)對新型冠狀病毒肺炎防護(hù)知識掌握更好,請你寫出社區(qū)管理員的理由(至少寫出一條) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com