【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動(dòng)點(diǎn),PEAB E,PFAC FM EF 中點(diǎn),則 AM 的最小值為(

A.1B.1.3C.1.2D.1.5

【答案】C

【解析】

首先證明四邊形AEPF為矩形,可得AM=AP,最后利用垂線段最短確定AP的位置,利用面積相等求出AP的長(zhǎng),即可得AM.

ABC中,因?yàn)?/span>AB2+AC2=BC2

所以ABC為直角三角形,∠A=90°,

又因?yàn)?/span>PEAB,PFAC

故四邊形AEPF為矩形,

因?yàn)?/span>MEF中點(diǎn),

所以M也是AP中點(diǎn),即AM=AP,

故當(dāng)APBC時(shí),AP有最小值,此時(shí)AM最小,

,可得AP=,

AM=AP=

故本題正確答案為C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A11),B﹣11),C﹣1﹣2),D1﹣2),把一根長(zhǎng)為2017個(gè)單位長(zhǎng)度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在A處,并按ABCDA的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線的另一端所在位置的點(diǎn)的坐標(biāo)是(。

A. ﹣1﹣2 B. ―1,1

C. -1-1 D. 1,―2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為(

A.2B.2.5或3.5

C.3.5或4.5D.2或3.5或4.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過點(diǎn)AAC垂直x軸于點(diǎn)C,連接BC,若ΔABC面積為 2.

(1)求k的值

(2)x軸上是否存在一點(diǎn)D,使ΔABD是以AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo),若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空并填寫理由:如圖,ADBE,∠1=2,那么∠A與∠E相等嗎?請(qǐng)完成解答過程:

解:∵ADBE(已知)

A=_____ (_________________)

又∵∠1=2 (______)

AC_____ (________________)

∴∠3=_____(兩直線平行,內(nèi)錯(cuò)角相等)

∴∠A=______ (_______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1 ;(2 ;(3; 4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司草坪的護(hù)欄是由50段形狀相同的拋物線組成的,為牢固起見,每段護(hù)欄需按間距0.4m加設(shè)不銹鋼管(如圖)做成立柱,為了計(jì)算所需不銹鋼管立柱的總長(zhǎng)度,設(shè)計(jì)人員測(cè)得如圖所示的數(shù)據(jù).

(1)求此拋物線的解析式;

(2)計(jì)算所需不銹鋼管的總長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系第一象限中,已知點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度勻速向點(diǎn)方向運(yùn)動(dòng),與此同時(shí),軸上動(dòng)點(diǎn)從點(diǎn)出發(fā),以相同的速度向右運(yùn)動(dòng), 兩動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為:, 分別為邊作矩形 過點(diǎn)作雙曲線交線段于點(diǎn),作中點(diǎn),連接

1)當(dāng)時(shí),求點(diǎn)的坐標(biāo).

2)若平分, 的值為多少?

3)若為直角, 的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?

2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元,請(qǐng)你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.

查看答案和解析>>

同步練習(xí)冊(cè)答案