【題目】在四邊形ABCD中,對角線AC、BD相交于點O,將△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1 , 旋轉(zhuǎn)角為θ(0°<θ<90°),連接AC1、BD1 , AC1與BD1交于點P.
(1)如圖1,若四邊形ABCD是正方形.
①求證:△AOC1≌△BOD1 .
②請直接寫出AC1 與BD1的位置關(guān)系.
(2)如圖2,若四邊形ABCD是菱形,AC=5,BD=7,設(shè)AC1=kBD1 . 判斷AC1與BD1的位置關(guān)系,說明理由,并求出k的值.
(3)如圖3,若四邊形ABCD是平行四邊形,AC=5,BD=10,連接DD1 , 設(shè)AC1=kBD1 . 請直接寫出k的值和AC12+(kDD1)2的值.
【答案】
(1)
解:證明:如圖1,
∵四邊形ABCD是正方形,
∴OC=OA=OD=OB,AC⊥BD,
∴∠AOB=∠COD=90°,
∵△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1,
∴OC1=OC,OD1=OD,∠COC1=∠DOD1,
∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,
在△AOC1和△BOD1中
,
∴△AOC1≌△BOD1(SAS);
②AC1⊥BD1;
(2)
解:AC1⊥BD1.
理由如下:如圖2,
∵四邊形ABCD是菱形,
∴OC=OA= AC,OD=OB= BD,AC⊥BD,
∴∠AOB=∠COD=90°,
∵△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1,
∴OC1=OC,OD1=OD,∠COC1=∠DOD1,
∴OC1=OA,OD1=OB,∠AOC1=∠BOD1,
∴ ,
∴△AOC1∽△BOD1,
∴∠OAC1=∠OBD1,
又∵∠AOB=90°,
∴∠OAB+∠ABP+∠OBD1=90°,
∴∠OAB+∠ABP+∠OAC1=90°,
∴∠APB=90°
∴AC1⊥BD1;
∵△AOC1∽△BOD1,
∴ = = = = ,
∴k= ;
(3)
解:如圖3,與(2)一樣可證明△AOC1∽△BOD1,
∴ = = = ,
∴k= ;
∵△COD繞點O按逆時針方向旋轉(zhuǎn)得到△C1OD1,
∴OD1=OD,
而OD=OB,
∴OD1=OB=OD,
∴△BDD1為直角三角形,
在Rt△BDD1中,
BD12+DD12=BD2=100,
∴(2AC1)2+DD12=100,
∴AC12+(kDD1)2=25.
【解析】(1)①如圖1,根據(jù)正方形的性質(zhì)得OC=OA=OD=OB,AC⊥BD,則∠AOB=∠COD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OC1=OC,OD1=OD,∠COC1=∠DOD1 , 則OC1=OD1 , 利用等角的補角相等得∠AOC1=∠BOD1 , 然后根據(jù)“SAS”可證明△AOC1≌△BOD1;②由∠AOB=90°,則∠OAB+∠ABP+∠OBD1=90°,所以∠OAB+∠ABP+∠OAC1=90°,則∠APB=90°所以AC1⊥BD1;(2)圖2,根據(jù)菱形的性質(zhì)得OC=OA= AC,OD=OB= BD,AC⊥BD,則∠AOB=∠COD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OC1=OC,OD1=OD,∠COC1=∠DOD1 , 則OC1=OA,OD1=OB,利用等角的補角相等得∠AOC1=∠BOD1 , 加上 ,根據(jù)相似三角形的判定方法得到△AOC1∽△BOD1 , 得到∠OAC1=∠OBD1 , 由∠AOB=90°得∠OAB+∠ABP+∠OBD1=90°,則∠OAB+∠ABP+∠OAC1=90°,則∠APB=90°,所以AC1⊥BD1;然后根據(jù)相似比得到 = = = ,所以k= ;(3)與(2)一樣可證明△AOC1∽△BOD1 , 則 = = = ,所以k= ;根據(jù)旋轉(zhuǎn)的性質(zhì)得OD1=OD,根據(jù)平行四邊形的性質(zhì)得OD=OB,則OD1=OB=OD,于是可判斷△BDD1為直角三角形,根據(jù)勾股定理得BD12+DD12=BD2=100,所以(2AC1)2+DD12=100,于是有AC12+(kDD1)2=25.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=100°,∠ACB的平分線交AB邊于點E,在AC邊取點D,使∠CBD=20°,連接DE,則∠CED的大小=_____(度).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠BAC=90,AB=AC.點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側(cè)作等腰直角三角形ADE,使DAE=90,連結(jié)CE.
探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.
應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為_______.
拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為_______.
(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,點D在邊OA上,將圖中的△COD繞點O按每秒10°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第 秒時,邊CD恰好與邊AB平行.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了節(jié)省空間,家里的飯碗一般是擺起來存放的,如果6只飯碗(注:飯碗的大小形狀都一樣,下同)擺起來的高度為15cm,9只飯碗擺起來的高度為20cm,李老師家的碗櫥每格的高度為36cm,則李老師一摞碗最多只能放__只.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于每個非零自然數(shù)n,拋物線y=x2﹣ x+ 與x軸交于An、Bn兩點,以AnBn表示這兩點間的距離,則A1B1+A2B2+…+A2017B2017的值是( )
A.
B.
C.
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點F,連接CD,EB.
(1)圖中還有幾對全等三角形,請你一一列舉;
(2)求證:CF=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一臺放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形,若顯示屏所在面的側(cè)邊AO與鍵盤所在面的側(cè)邊BO長均為24cm,點P為眼睛所在位置,D為AO的中點,連接PD,當PD⊥AO時,稱點P為“最佳視角點”,作PC⊥BC,垂足C在OB的延長線上,且BC=12cm.
(1)當PA=45cm時,求PC的長;
(2)若∠AOC=120°時,“最佳視角點”P在直線PC上的位置會發(fā)生什么變化?此時PC的長是多少?請通過計算說明.(結(jié)果精確到0.1cm,可用科學計算器,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com