【題目】京東商城銷售A、B兩種型號的電風(fēng)扇,銷售單價分別為250元、180元,如表是近兩周的銷售利潤情況:(進(jìn)價、售價均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號電風(fēng)扇的每臺進(jìn)價;
(2)若京東商城準(zhǔn)備用不多于5萬元的金額采購這兩種型號的電風(fēng)扇共300臺,求A種型號的電風(fēng)扇最多能采購多少臺?
【答案】(1)A種型號的風(fēng)扇每臺進(jìn)價200元,B種型號的風(fēng)扇每臺進(jìn)價150元;(2)A種型號的電風(fēng)扇最多能采購100臺.
【解析】
(1)設(shè)A種型號的風(fēng)扇每臺進(jìn)價x元,B種型號的風(fēng)扇每臺進(jìn)價y元,利用圖表中數(shù)據(jù)得出等式進(jìn)而得出答案;
(2)結(jié)合京東商城準(zhǔn)備用不多于5萬元的金額采購這兩種型號的電風(fēng)扇共300臺得出不等式求出答案.
(1)設(shè)A種型號的風(fēng)扇每臺進(jìn)價x元,B種型號的風(fēng)扇每臺進(jìn)價y元,由題意得:
解得:.
答:A種型號的風(fēng)扇每臺進(jìn)價200元,B種型號的風(fēng)扇每臺進(jìn)價150元.
(2)設(shè)A種型號的電風(fēng)扇能采購a臺,由題意得:
200a+150(300﹣a)≤50000
解得:a≤100,∴a最大為100臺.
答:A種型號的電風(fēng)扇最多能采購100臺.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,△ABO的頂點坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EF與CD關(guān)于y軸對稱,線段CD與NM關(guān)于直線l對稱.
(1)求點N、M的坐標(biāo)(用含m、a的代數(shù)式表示);
(2)△ABO與△MFE通過平移能重合嗎?能與不能都要說明其理由,若能請你說出一個平移方案(平移的單位數(shù)用m、a表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標(biāo)系中,畫出這兩個函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫出x2+bx+c>x+1時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為a,B,C在x軸上,A在y軸上.
(1)作△ABC關(guān)于x軸的對稱圖形△A′B′C′;
(2)求△ABC各頂點坐標(biāo)和△A′B′C′各頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△AFD和△CEB中,點A、E、F、C在同一直線上,AE=CF,∠B=∠D,AD∥BC.
(1)AD與BC相等嗎?請說明理由;
(2)BE與DF平行嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的3個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B順時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則線段AB掃過的圖形面積是平方單位(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=2cm,則BE=_______cm.
(3)BE與AD有何位置關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90,則∠BCE 度;
(2)設(shè)∠BAC=,∠BCE=.
①如圖2,當(dāng)點D在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點D在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論,不必說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com