【題目】直線y=kx+b與反比例函數(shù)y=(x0)的圖象分別交于點(diǎn) A(m,3)和點(diǎn)B(6,n),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.

(1)求直線AB的解析式;

(2)若點(diǎn)Px軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).

【答案】(1)y=﹣x+4;(2)(2,0)或(,0).

【解析】試題分析:(1)先根據(jù)反比例函數(shù)解析式確定出點(diǎn)A、點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法即可求得一次函數(shù)的解析式;

(2)分△ADP∽△CDO與△PDA∽△CDO兩種情況討論即可得.

試題解析:(1)y=kx+b與反比例函數(shù)y=(x0)的圖象分別交于點(diǎn) A(m,3)和點(diǎn)B(6,n),

m=2,n=1,

A(2,3),B(6,1),

則有,

解得

∴直線AB的解析式為y=﹣x+4;

(2)如圖

①當(dāng)PAOD時(shí),∵PAOC,

∴△ADP∽△CDO,

此時(shí)p(2,0).

②當(dāng)AP′CD時(shí),易知△P′DA∽△CDO,

∵直線AB的解析式為y=﹣x+4,

∴直線P′A的解析式為y=2x﹣1,

y=0,解得x=,

P′(,0),

綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(2,0)或(,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下表中的二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)y的對(duì)應(yīng)值,可判斷二次函數(shù)的解析式為( 。

x

0

1

2

y

A. y=x2x B. y=x2+x

C. y=x2x+ D. y=x2+x+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同樣條件下對(duì)某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計(jì)發(fā)芽種子數(shù),獲得如下頻數(shù)表.

試驗(yàn)種子n(粒)

1

5

50

100

200

500

1000

2000

3000

發(fā)芽頻數(shù)m

1

4

45

92

188

476

951

1900

2850

發(fā)芽頻率

0

0.80

0.90

0.92

0.94

0.952

0.951

a

b

(1)計(jì)算表中a,b的值;

(2)估計(jì)該麥種的發(fā)芽概率;

(3)如果該麥種發(fā)芽后,只有87%的麥芽可以成活,現(xiàn)有100kg麥種,則有多少千克的麥種可以成活為秧苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點(diǎn),O是形內(nèi)一點(diǎn),若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別是4、5、8,則四邊形DHOG的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解一元二次方程

14x2﹣8x+1=0(配方法)27x5x+2=65x+2)(因式分解法)

33x2+52x+1=0(公式法)4x2﹣2x﹣8=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,在Rt△ABC中,∠A=90°,BD平分∠ABC,M為邊AC上一點(diǎn),ME⊥BC,垂足為E,∠AME的平分線交直線AB于點(diǎn)F.試說明BD與MF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在《九章算術(shù)》中有求三角形面積公式底乘高的一半,但是在實(shí)際丈量土地面積時(shí),量出高并非易事,所以古人想到了能否利用三角形的三條邊長(zhǎng)來求面積.我國(guó)南宋著名的數(shù)學(xué)家秦九韶(年)提出了三斜求積術(shù),闡述了利用三角形三邊長(zhǎng)求三角形面積方法,簡(jiǎn)稱秦九韶公式.在海倫(公元年左右,生平不詳)的著作《測(cè)地術(shù)》中也記錄了利用三角形三邊長(zhǎng)求三角形面積的方法,相傳這個(gè)公式最早是由古希臘數(shù)學(xué)家阿基米德(公元前公元前年)得出的,故我國(guó)稱這個(gè)公式為海倫一秦九韶公式.它的表達(dá)為:三角形三邊長(zhǎng)分別為、、,則三角形的面積(公式里的為半周長(zhǎng)即周長(zhǎng)的一半).

請(qǐng)利用海倫一秦九韶公式解決以下問題:

)三邊長(zhǎng)分別為、的三角形面積為__________.

)四邊形中,,,,,四邊形的面積為__________.

)五邊形中,,,,,五邊形的面積為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)衢州市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,衢州市近5年國(guó)民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國(guó)民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。

請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);

(2)2016年比2015年的國(guó)民生產(chǎn)總值增加了百分之幾(精確到1%)?

(3)若要使2018年的國(guó)民生產(chǎn)總值達(dá)到1573億元,求2016年至2018年我市國(guó)民生產(chǎn)總值平均年增長(zhǎng)率(精確到1%)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,同底數(shù)冪的乘法法則為:am·anamn(其中a≠0,mn為正整數(shù)),類似地我們規(guī)定關(guān)于任意正整數(shù)mn的一種新運(yùn)算:h(mn)h(m)·h(n),請(qǐng)根據(jù)這種新運(yùn)算填空:

(1)h(1),則h(2)________;

(2)h(1)k(k≠0),則h(n)·h(2017)________(用含nk的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案