【題目】如圖,將銳角為的直角三角板MPN的一個(gè)銳角頂點(diǎn)P與邊長(zhǎng)為4的正方形ABCD的頂點(diǎn)A重合,正方形ABCD固定不動(dòng),然后將三角板繞著點(diǎn)A旋轉(zhuǎn),的兩邊分別與正方形的邊BC、DC或其延長(zhǎng)線相交于點(diǎn)E、F,連結(jié)EF.在三角板旋轉(zhuǎn)過(guò)程中,當(dāng)的一邊恰好經(jīng)過(guò)BC邊的中點(diǎn)時(shí),則EF的長(zhǎng)為_____.
【答案】或
【解析】
①當(dāng)MA經(jīng)過(guò)BC的中點(diǎn)E時(shí),延長(zhǎng)FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF,利用勾股定理列出方程即可;②NA經(jīng)過(guò)BC的中點(diǎn)H時(shí),在CD上截取DQ=BE,連接AQ,同理證明△ABE≌△ADQ(SAS),再證明△QAF≌△EAF(SAS)和△ABH≌△FCH(ASA),根據(jù)勾股定理列出方程即可解決問(wèn)題.
解:①當(dāng)MA經(jīng)過(guò)BC的中點(diǎn)E時(shí),延長(zhǎng)FD至G,使DG=BE,連接AG,如下圖所示,
∵ABCD是正方形,
∴AB=AD,∠ABE=∠ADG=∠DAB=90°,
又∵BE=DG,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠DAG=∠EAB,
∵∠EAF=45°,
∴∠DAF+∠EAB=45°,
∴∠DAF+∠DAG=45°,
∴∠GAF=∠EAF=45°,
∵AF=AF,
∴△GAF≌△EAF,
∴EF=GF,
∴GF=DF+DG=DF+BE,
∴EF=DF+BE.
∵點(diǎn)E是BC的中點(diǎn),
∴BE=CE=2,
設(shè)FD=x,則FG=EF=2+x,FC=4x.
在Rt△EFC中,(x+2)2=(4x)2+22,
∴x=,
∴EF=x+2=.
②當(dāng)NA經(jīng)過(guò)BC的中點(diǎn)H時(shí),在CD上截取DQ=BE,連接AQ,如下圖所示,
由情況①可知,△ABE≌△ADQ(SAS),
∴AE=AQ,∠DAQ=∠EAB,
∴∠DAQ+∠BAQ=∠EAB+∠BAQ=90°,
∵∠EAF=45°,
∴∠QAF=∠EAF=45°,
∵AF=AF,
∴△QAF≌△EAF(SAS),
∴EF=QF,
又∵點(diǎn)H是BC的中點(diǎn),
∴BH=CH,
∵∠ABH=∠FCH,∠BHA=∠CHF,
∴△ABH≌△FCH(ASA),
∴CF=AB=4,
設(shè)BE=DQ=x,則EC=4+x,EF=QF=8x,
∵CH=BH=2,CF=AB=4,
由勾股定理得到:(4+x)2+42=(8x)2,
∴x=,
∴EF=8=
綜上所述,EF的長(zhǎng)為或,
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下面的推理過(guò)程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由.
如圖,已知∠B+∠BCD=180°,∠B=∠D.
試說(shuō)明:∠E=∠DFE
解:∠B+∠BCD=180°(已知)
∴AB∥CD( )
∴∠B=∠DCE( )
又∵∠B=∠D(已知)
∴∠DCE= ( )
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在解一元二次方程時(shí),發(fā)現(xiàn)有這樣一種解法:
如:解方程.
解:原方程可變形,得: .
,
,
.
直接開(kāi)平方并整理,得. , .
我們稱小明這種解法為“平均數(shù)法”.
(1)下面是小明用“平均數(shù)法”解方程時(shí)寫的解題過(guò)程.
解:原方程可變形,得: .
,
.
直接開(kāi)平方并整理,得. , .
上述過(guò)程中的a、b、c、d表示的數(shù)分別為 , , , .
(2)請(qǐng)用“平均數(shù)法”解方程: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程,解應(yīng)用題
甲乙兩人相約周末到影院看電影,他們的家分別距離影院1200米和2000米,兩人分別從家中同時(shí)出發(fā),已知甲和乙的速度比是,結(jié)果甲比乙提前4分鐘到達(dá)影院.
(1)求甲、乙兩人的速度?
(2)在看電影時(shí),甲突然接到家長(zhǎng)電話讓其15分鐘內(nèi)趕回家,時(shí)間緊迫改變速度,比來(lái)時(shí)每分鐘多走25米,甲是否能按要求時(shí)間到家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃用這兩種原料全部生產(chǎn)A,B兩種產(chǎn)品共50件,生產(chǎn)A,B兩種產(chǎn)品與所需原料情況如下表所示:
原料 型號(hào) | 甲種原料(千克) | 乙種原料(千克) |
A產(chǎn)品(每件) | 9 | 3 |
B產(chǎn)品(每件) | 4 | 10 |
(1)該工廠生產(chǎn)A,B兩種產(chǎn)品有哪幾種方案?
(2)如果該工廠生產(chǎn)一件A產(chǎn)品可獲利80元,生產(chǎn)一件B產(chǎn)品可獲利120元,那么該工廠應(yīng)該怎樣安排生產(chǎn)可獲得最大利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)學(xué)生全部參加“初二生物地理會(huì)考”,從中抽取了部分學(xué)生的生物考試成績(jī),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A,B,C,D四等,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題
(1)抽取了______名學(xué)生成績(jī);(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中等級(jí)D所在的扇形的圓心角度數(shù)是______;
(4)若A,B,C代表合格,該校初二年級(jí)有300名學(xué)生,求全年級(jí)生物合格的學(xué)生共約多少人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,三角形ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中A(2,), B(4,3), C(1,2).
(1)將三角形ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到三角形,則三角形的三個(gè)頂點(diǎn)坐標(biāo)。( ),( ),( ).
(2)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=2cm,AE=1cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的A、B兩種型號(hào)的凈水器,下表是近兩周的銷售情況:
(1)求A,B兩種型號(hào)的凈水器的銷售單價(jià);
(2)若電器公司準(zhǔn)備用不多于54000元的金額在采購(gòu)這兩種型號(hào)的凈水器共30臺(tái),求A種型號(hào)的凈水器最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,公司銷售完這30臺(tái)凈水器能否實(shí)現(xiàn)利潤(rùn)為12800元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 18000元 |
第二周 | 4臺(tái) | 10臺(tái) | 31000元 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com