精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,將矩形ABCD沿直線AE折疊,頂點D正好落在BC邊上F點處,已知CE=3cm, AB=8cm,則圖中AD長為______________________

【答案】10 cm

【解析】

根據折疊以及矩形的對邊相等可得:AF=AD=BCDE=EF.然后根據勾股定理求得CF的長,再設AD=x cm,即可表示BF的長,根據勾股定理進行求解即可.

解:∵矩形ABCD沿直線AE折疊,

∴△ADE和△AFE關于AE成軸對稱,AB=CD,AD=BC
AF=AD=BC,EF=DE=DC-CE=8 cm -3 cm =5 cm
CF==4 cm,
AD=xcm,則AF=AD=BC=x cmBF=(x-4) cm
RtABF中,由勾股定理,得x2-82 =x-42
解得x=10,即AD=10 cm

故答案為:10 cm

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知直線與雙曲線(k>0)交于A、B兩點,點B的坐標為(﹣4,﹣2),C為雙曲線(k>0)上一點,且在第一象限內,若△AOC的面積為6.

(1)求雙曲線的解析式;

(2)求點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),

C(3,4)

⑴ 作出與△ABC關于y軸對稱△A1B1C1,并寫出 三個頂點的坐標為:A1 ),B1 ),C1 );

⑵ 在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標;

⑶ 在 y 軸上是否存在點 Q,使得SAOQ=SABC,如果存在,求出點 Q 的坐標,如果不存在,說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,ABC的位置如圖所示.

1)頂點A關于x軸對稱的點A的坐標(____________),頂點B的坐標(____________),頂點C關于原點對稱的點C的坐標(____________).

2ABC的面積為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將一矩形紙片OABC放在直角坐標系中,O為原點,Cx軸上,OA6,OC10.

(1)如圖1,在OA上取一點E,將△EOC沿EC折疊,使O點落在AB邊上的D點,求E點的坐標;

(2)如圖2,在OA、OC邊上選取適當的點E′、F,將△E′OF沿E′F折疊,使O點落在AB邊上的D′點,過D′D′GC′OE′FT點,交OC′G點,T坐標為(3,m),求m.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的部分圖象如圖所示,則關于的一元二次方程的解為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形中,,點開始沿折線的速度運動,點開始沿邊以的速度移動,如果點分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設運動時間為,當________時,四邊形也為矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經過點A,BD直線m, CE直線m,垂足分別為點DE.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、A、E三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應用:如圖3,D、ED、A、E三點所在直線m上的兩動點(D、AE三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一棵樹CD10m高處的B點有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經過的路程相等,試問這棵樹多高?

查看答案和解析>>

同步練習冊答案