【題目】如圖,以△ABC的邊AB為直徑的⊙O恰好過BC的中點D,過點D作DE⊥AC于E,連結(jié)OD,則下列結(jié)論中:①OD∥AC;②∠B=∠C;③2OA=BC;④DE是⊙O的切線;⑤∠EDA=∠B,正確的序號是_____.
【答案】①②④⑤
【解析】
連接AD,根據(jù)三角形中位線定理得到OD∥AC,①正確;根據(jù)圓周角定理得到∠ADB=90°=∠ADC,根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,②正確;根據(jù)切線的判定定理得到DE是⊙O的切線,④正確;根據(jù)余角的性質(zhì)得到∠EDA=∠ODB,根據(jù)等腰三角形的性質(zhì)得到∠B=∠ODB,求得∠EDA=∠B,⑤正確;根據(jù)線段垂直平分線的性質(zhì)得到AC=AB,求得OA=AC,③不正確
解:連接AD,
∵D為BC中點,點O為AB的中點,
∴OD為△ABC的中位線,
∴OD∥AC,①正確;
∵AB是⊙O的直徑,
∴∠ADB=90°=∠ADC,
即AD⊥BC,又BD=CD,
∴AC=BC,
∴△ABC為等腰三角形,
∴∠B=∠C,②正確;
∵DE⊥AC,且DO∥AC,
∴OD⊥DE,
∵OD是半徑,
∴DE是⊙O的切線,∴④正確;
∴∠ODA+∠EDA=90°,
∵∠ADB=∠ADO+∠ODB=90°,
∴∠EDA=∠ODB,
∵OD=OB,
∴∠B=∠ODB,
∴∠EDA=∠B,∴⑤正確;
∵D為BC中點,AD⊥BC,
∴AC=AB,
∵OA=OB=AB,
∴OA=AC,
∴2OA=AC,
∴③不正確,
故答案為:①②④⑤.
科目:初中數(shù)學 來源: 題型:
【題目】某同學所在年級的500名學生參加志愿者活動,現(xiàn)有以下5個志愿服務項目:A,紀念館志講解員.B.書香社區(qū)圖書整理C.學編中國結(jié)及義賣.D,家風講解員E.校內(nèi)志愿服務,要求:每位學生都從中選擇一個項目參加,為了了解同學們選擇這個5個項目的情況,該同學隨機對年級中的40名同學選擇的志愿服務項目進行了調(diào)查,過程如下:
收集數(shù)據(jù):設計調(diào)查問卷,收集到如下數(shù)據(jù)(志愿服務項目的編號,用字母代號表示)
B,E,B,A,E,C,C,C,B,B,
A,C,E,D,B,A,B,E,C,A,
D,D,B,B,C,C,A,E,B
C,B,D,C,A,C,C,A,C,E,
(1)整理、描述詩句:劃記、整理、描述樣本數(shù)據(jù),繪制統(tǒng)計圖如下,請補全統(tǒng)計表和統(tǒng)計圖
選擇各志愿服務項目的人數(shù)統(tǒng)計表
志愿服務項目 | 劃記 | 人數(shù) |
A.紀念館志愿講解員 | 正 | 8 |
B.書香社區(qū)圖書整理 | ||
C.學編中國結(jié)及義賣 | 正正 | 12 |
D.家風講解員 | ||
E.校內(nèi)志愿服務 | 正 一 | 6 |
合計 | 40 | 40 |
分析數(shù)據(jù)、推斷結(jié)論
(2)抽樣的40個樣本數(shù)據(jù)(志愿服務項目的編號)的眾數(shù)是 (填A﹣E的字母代號)
(3)請你任選A﹣E中的兩個志愿服務項目,根據(jù)該同學的樣本數(shù)據(jù)估計全年級大約有多少名同學選擇這兩個志愿服務項目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,的直徑,點是延長線上的一點,過點作的切線,切點為,連接.
(1)若,求的長;
(2)若點在的延長線上運動,的平分線交于點,你認為的大小是否發(fā)生變化?若變化,請說明理由;若不變化,求出的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,為射線上一定點,點關(guān)于射線的對稱點為點為射線上一動點,連接,滿足為鈍角,以點為中心,將線段逆時針旋轉(zhuǎn)至線段,滿足點在射線的反向延長線上.
(1)依題意補全圖形;
(2)當點在運動過程中,旋轉(zhuǎn)角是否發(fā)生變化?若不變化,請求出的值,若變化,請說明理由;
(3)從點向射線作垂線,與射線的反向延長線交于點,探究線段和的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點D在邊AB上.
(1)如圖1,當點E在邊BC上時,求證DE=EB;
(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為調(diào)查某市市民上班時最常用的交通工具的情況,隨機抽取了部分市民進行調(diào)查,要求被調(diào)查者從“:自行車,:家庭汽車,:公交車,:電動車,:其他”五個選項中選擇最常用的一項,將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題.
(1)本次調(diào)查中,一共調(diào)查了 名市民;扇形統(tǒng)計圖中,項對應的扇形圓心角是_____ ;
(2)補全條形統(tǒng)計圖;
(3)若甲上班時從三種交通工具中隨機選擇一種, 乙上班時從三種交通工具中隨機選擇一種,請用列表法或畫樹狀圖的方法,求出甲、乙兩人都不選種交通工具上班的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(操作)如圖①,在矩形中,為對角線上一點(不與點重合),將沿射線方向平移到的位置,的對應點為.已知(不需要證明).
(探究)過圖①中的點作交延長線于點,連接,其它條件不變,如圖②.求證:.
(拓展)將圖②中的沿翻折得到,連接,其它條件不變,如圖③.當最短時,若,,直接寫出的長和此時四邊形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,點在邊上,與點、不重合,過點作的垂線與的延長線相交于點,連結(jié),交于點.
(1)當為的中點時,求的長;
(2)當是以為腰的等腰三角形時,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com