【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與軸的一個(gè)交點(diǎn)坐標(biāo)為(1,0),其部分圖象如圖所示,下列結(jié)論:

4ac<b2; 方程ax2+bx+c=0的兩個(gè)根是; 3a+c>0 當(dāng)y>0時(shí),x的取值范圍是-1≤x<3 當(dāng)x<0時(shí),yx增大而增大;

其中結(jié)論正確有__________.

【答案】①②⑤

【解析】試題解析:∵拋物線與x軸有2個(gè)交點(diǎn),
b2-4ac0,所以①正確;
∵拋物線的對(duì)稱軸為直線x=1,
而點(diǎn)(-10)關(guān)于直線x=1的對(duì)稱點(diǎn)的坐標(biāo)為(30),
∴方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3,所以②正確;
x=-=1,即b=-2a,
x=-1時(shí),y=0,即a-b+c=0
a+2a+c=0,所以③錯(cuò)誤;
∵拋物線與x軸的兩點(diǎn)坐標(biāo)為(-1,0),(3,0),
∴當(dāng)-1x3時(shí),y0,所以④錯(cuò)誤;
∵拋物線的對(duì)稱軸為直線x=1,
∴當(dāng)x1時(shí),yx增大而增大,所以⑤正確.

故答案為:①②⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)1班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:

次數(shù)

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

頻數(shù)

a

4

12

16

8

3

結(jié)合圖表完成下列問題:

(1)a=   

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)寫出全班人數(shù)是   ,并求出第三組“120≤x<140”的頻率(精確到0.01)

(4)若跳繩次數(shù)不少于140的學(xué)生成績(jī)?yōu)閮?yōu)秀,則優(yōu)秀學(xué)生人數(shù)占全班總?cè)藬?shù)的百分之幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca0)的對(duì)稱軸為x=1,交x軸的一個(gè)交點(diǎn)為(x10),且﹣1x10,有下列5個(gè)結(jié)論:①abc0;9a﹣3b+c02c3ba+c2b2;a+bmam+b)(m≠1的實(shí)數(shù))其中正確的結(jié)論有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸相交于兩點(diǎn)A1,0),B3,0),與y軸相交于點(diǎn)C0,3).

1)求拋物線的函數(shù)關(guān)系式.

2)將y=ax2+bx+c化成y=ax﹣m2+k的形式(請(qǐng)直接寫出答案).

3)若點(diǎn)D3.5,m)是拋物線y=ax2+bx+c上的一點(diǎn),請(qǐng)求出m的值,并求出此時(shí)ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8如圖,在ABC中,AB=AC,DACABC的一個(gè)外角

實(shí)踐與操作:

根據(jù)要求尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母保留作圖痕跡,不寫作法

1DAC的平分線AM

2作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE、CF

猜想并證明:

判斷四邊形AECF的形狀并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點(diǎn)AAEBC,垂足為E,連接DEF為線段DE上一點(diǎn),且∠AFE=B

1)求證:ADF∽△DEC;

2)若AB=4,AD=AE=3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠E∠F90°,∠B∠C,AEAF.有以下結(jié)論:①EMFN;②CDDN③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分13分

某公司經(jīng)銷農(nóng)產(chǎn)品業(yè)務(wù),以3萬元/噸的價(jià)格向農(nóng)戶收購農(nóng)產(chǎn)品后,以甲、乙兩種方式進(jìn)行銷售,方式包裝后直接銷售;方式深加工后再銷售方式農(nóng)產(chǎn)品的包裝成本為1萬元/噸,根據(jù)市場(chǎng)調(diào)查,它每噸平均銷售價(jià)格y單位:萬元與銷售量m單位:噸之間的函數(shù)關(guān)系為y = -m+142m8;方式農(nóng)產(chǎn)品深加工等不含進(jìn)價(jià)總費(fèi)用S單位:萬元與銷售量n單位:噸之間的函數(shù)關(guān)系是S=3n+12,平均銷售價(jià)格為9萬元/噸

參考公式:拋物線y=ax2+bx+ca0的頂點(diǎn)坐標(biāo)是,

1該公司收購了20噸農(nóng)產(chǎn)品,其中方式銷售農(nóng)產(chǎn)品x噸,其余農(nóng)產(chǎn)品用方式銷售,經(jīng)銷這20噸農(nóng)產(chǎn)品所獲得的毛利潤為w萬元毛利潤=銷售總收入-經(jīng)營總成本).

直接寫出:方式購買和包裝x噸農(nóng)產(chǎn)品所需資金為_________萬元;方式購買和加工其余農(nóng)產(chǎn)品所需資金為_________萬元;

求出w關(guān)于x的函數(shù)關(guān)系式;

若農(nóng)產(chǎn)品全部銷售該公司共獲得了48萬元毛利潤,求x的值;

若農(nóng)產(chǎn)品全部售出,該公司的最小利潤是多少

2該公司現(xiàn)有流動(dòng)資金132萬元,若將現(xiàn)有流動(dòng)資金全部用于經(jīng)銷農(nóng)產(chǎn)品,

其中方式經(jīng)銷農(nóng)產(chǎn)品x噸,則總經(jīng)銷量p為__________噸用含x的代數(shù)式表示;

當(dāng)x為何值時(shí),使公司獲得最大毛利潤,并求出最大毛利潤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) ,均在雙曲線上,下列說法中錯(cuò)誤的是(

A.,則B.,則

C.,則D.,則

查看答案和解析>>

同步練習(xí)冊(cè)答案