【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點 (不與點A、B重合),連接CO并延長CO交⊙O于點D,連接AD.
(1)弦長AB等于(結果保留根號);
(2)當∠D=20°時,求∠BOD的度數(shù);
(3)當AC的長度為多少時,以A、C、D為頂點的三角形與以B、C、0為頂點的三角形相似?請寫出解答過程.
【答案】
(1)2
(2)解:連接OA,
∵OA=OB,OA=OD,
∴∠BAO=∠B,∠DAO=∠D,
∴∠DAB=∠BAO+∠DAO=∠B+∠D,
又∵∠B=30°,∠D=20°,
∴∠DAB=50°,
∴∠BOD=2∠DAB=100°;
(3)解:∵∠BCO=∠A+∠D,
∴∠BCO>∠A,∠BCO>∠D,
∴要使△DAC與△BOC相似,只能∠DCA=∠BCO=90°,
此時∠BOC=60°,∠BOD=120°,
∴∠DAC=60°,
∴△DAC∽△BOC,
∵∠BCO=90°,
即OC⊥AB,
∴AC= AB= .
∴當AC的長度為 時,以A、C、D為頂點的三角形與以B、C、0為頂點的三角形相似.
【解析】解:(1)過點O作OE⊥AB于E, 則AE=BE= AB,∠OEB=90°,
∵OB=2,∠B=30°,
∴BE=OBcos∠B=2× = ,
∴AB=2 ;
故答案為:2 ;
(1)過點O作OE⊥AB于E,由垂徑定理即可求得AB的長;(2)連接OA,由OA=OB,OA=OD,可得∠BAO=∠B,∠DAO=∠D,則可求得∠DAB的度數(shù),又由圓周角等于同弧所對圓心角的一半,即可求得∠DOB的度數(shù);(3)由∠BCO=∠A+∠D,可得要使△DAC與△BOC相似,只能∠DCA=∠BCO=90°,然后由相似三角形的性質即可求得答案.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,CA=CB=4,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如圖所示放置,頂點P在線段AB上滑動,三角尺的直角邊PM始終經過點C,并且與CB的夾角∠PCB=α,斜邊PN交AC于點D.
(1)當PN∥BC時,∠ACP=_____度.
(2)在點P滑動的過程中,當AP長度為多少時,△ADP與△BPC全等.
(3)在點P的滑動過程中,△PCD的形狀可以是等腰三角形嗎?若不可以,請說明理由;若可以,請求出夾角α的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)當一次性購物標價總額是300元時,甲、乙超市實付款分別是多少?
(2)當標價總額是多少時,甲、乙超市實付款一樣?
(3)小王兩次到乙超市分別購物付款198元和466元,若他只去一次該超市購買同樣多的商品,可以節(jié)省多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反映的過程是小濤從家出發(fā),去菜地澆水,又去玉米地鋤草,然后回家.其中x表示時間,y表示小濤離家的距離.
(1)菜地離小濤家的距離是____km,小濤走到菜地用了____min,小濤給菜地澆水用了___min.
(2)菜地離玉米地的距離是____km,小濤從菜地到地用了____min,小濤給玉米地鋤草用了____min.
(3)玉米地離小濤家的距離是___km,小濤從玉米地走回家的平均速度是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ACB=90,AC=BC=4,D為AB的中點,E,F分別是AC, BC上的點(點E不與端點A,C重合),且AE=CF,連接EF并取EF的中點O,連接DO并延長至點G,使GO=OD.連接DE, GE, GF.
(1)求證:四邊形EDFG是正方形;
(2)直接寫出四邊形EDFG面積的最小值和E點所在的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=90°,射線OA繞點O逆時針方向以每秒6°的速度旋轉(當旋轉角度等于360°時,OA停止旋轉),同時OB繞點O以每秒2°的速度旋轉(當OA停止旋轉時,OB同樣停止旋轉).求當OA旋轉多少秒,旋轉后的OA與OB形成的角度為50°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y= x﹣2與x軸交于點A,與y軸交于點C,經過A、C兩點的拋物線與軸交于另一點B(1,0).
(1)求該拋物線的解析式.
(2)在直線y= x﹣2上方的拋物線上存在一動點D,連接AD、CD,設點D的橫坐標為m,△DCA的面積為S,求S與m的函數(shù)關系式,并求出S的最大值.
(3)在拋物線上是否存在一點M,使得以M為圓心,以 為半徑的圓與直線AC相切?若存在,請求出點M的坐標;若不存在,請說明理由.
(4)在y軸的正半軸上存在一點P,使∠APB的值最大,請直接寫出當∠APB最大時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦.過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關系,并說明理由;
(2)若AB=9,BC=6.求PC的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com