【題目】如圖,已知∠AOB=90°,射線OA繞點O逆時針方向以每秒6°的速度旋轉(zhuǎn)(當(dāng)旋轉(zhuǎn)角度等于360°時,OA停止旋轉(zhuǎn)),同時OB繞點O以每秒2°的速度旋轉(zhuǎn)(當(dāng)OA停止旋轉(zhuǎn)時,OB同樣停止旋轉(zhuǎn)).求當(dāng)OA旋轉(zhuǎn)多少秒,旋轉(zhuǎn)后的OA與OB形成的角度為50°.

【答案】(1)x=10 ②x=35; (2)當(dāng)OA旋轉(zhuǎn)5秒或10秒或17.5秒或35或50秒時,與OB形成角度為50°.

【解析】

試題(1)當(dāng)OB逆時針旋轉(zhuǎn):設(shè)OA旋轉(zhuǎn)x秒后與OB形成角度為,①OA未追上OB,②當(dāng)OA超過OB,列方程即可得到結(jié)論;

(2)當(dāng)OB順時針旋轉(zhuǎn):設(shè)OA旋轉(zhuǎn)x后與OB形成角度為,①OAOB相遇前,②OAOB相遇后,列方程即可得到結(jié)論.

解:(1)當(dāng)OB逆時針旋轉(zhuǎn):設(shè)OA旋轉(zhuǎn)x秒后與OB形成角度為50°

OA未追上OB

50-2x+6x=90,解得 x=10

②當(dāng)OA超過OB

6x-90=50+2x

解得 x=35

(2)當(dāng)OB順時針旋轉(zhuǎn):設(shè)OA旋轉(zhuǎn)x秒后與OB形成角度為50°

①OA與OB相遇前

2x+6x+50=90

解得 x=5

②OA與OB相遇后

6x+2x-50=90

解得 x=17.5

或6x+2x-90+50=360

解得 x=50

綜上所述:當(dāng)OA旋轉(zhuǎn)5秒或10秒或17.5秒或35或50秒時,與OB形成角度為50°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了節(jié)約用水,對自來水的收費標(biāo)準作如下規(guī)定:每月每戶用水不超過10噸的部分,按2/噸收費;超過10噸的部分按2.5/噸收費.

1)若黃老師家5月份用水16噸,問應(yīng)交水費多少元?

2)若黃老師家6月份交水費30元,問黃老師家5月份用水多少噸?

3)若黃老師家7月用水a噸,問應(yīng)交水費多少元?(用a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年G20杭州峰會期間,某志愿者小組有五名翻譯,其中一名只會翻譯法語,三名只會翻譯英語,還有一名兩種語言都會翻譯.若從中隨機挑選兩名組成一組,則該組能夠翻譯上述兩種語言的概率是多少?(請用“畫樹狀圖”的方法給出分析過程,并求出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點 (不與點A、B重合),連接CO并延長CO交⊙O于點D,連接AD.
(1)弦長AB等于(結(jié)果保留根號);
(2)當(dāng)∠D=20°時,求∠BOD的度數(shù);
(3)當(dāng)AC的長度為多少時,以A、C、D為頂點的三角形與以B、C、0為頂點的三角形相似?請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB上一點O,OC⊥AB,OD⊥OE, 若∠COE=∠BOD.

(1)求∠COE, ∠BOD, ∠AOE的度數(shù).

(2)若OF平分∠BOE,求∠AOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,邊OC在x軸的負半軸上,反比例y= (k<0)的圖象經(jīng)過點A與BC的中點F,連接AF、OF,若△AOF的面積為9,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進30米到達C處,又測得頂部E的仰角為60°,求大樓EF的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù) =1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于O,OEAB,OFCD。

(1)圖中與∠COE互補的角是___________________; (把符合條件的角都寫出來)

(2)如果∠AOC =EOF ,求∠AOC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),ABC的頂點均在格點上,請在所給的直角坐標(biāo)系中解答下列問題:

(1)作出ABC繞點A逆時針旋轉(zhuǎn)90°的AB1C1,再作出AB1C1關(guān)于原點O成中心對稱的A1B2C2

(2)點B1的坐標(biāo)為 ,點C2的坐標(biāo)為

(3)ABC經(jīng)過怎樣的旋轉(zhuǎn)可得到A1B2C2,

查看答案和解析>>

同步練習(xí)冊答案