【題目】如圖,矩形的頂點,分別在菱形的邊,上,頂點,在菱形的對角線上,與相交于點.
(1)求證:;
(2)若為中點,,求菱形的周長.
【答案】(1)見解析;(2)8
【解析】
(1)根據(jù)矩形的性質(zhì)得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根據(jù)菱形的性質(zhì)得到AD∥BC,得到∠GBF=∠EDH,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)連接EG,根據(jù)菱形的性質(zhì)得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四邊形ABGE是平行四邊形,得到AB=EG,于是得到結(jié)論.
(1)∵四邊形EFGH是矩形,
∴EH=FG,EH∥FG,
∴∠GFH=∠EHF,
∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,
∴∠BFG=∠DHE,
∵四邊形ABCD是菱形,
∴AD∥BC,
∴∠GBF=∠EDH,
∴△BGF≌△DEH(AAS),
∴BG=DE;
(2)∵四邊形ABCD是菱形,
∴AD=BC,AD∥BC,
∵E為AD中點,
∴AE=ED,
∵BG=DE,
∴AE=BG,AE∥BG,
∴四邊形ABGE是平行四邊形,
∴AB=EG,
∵EG=FH=2,
∴AB=2,
∴菱形ABCD的周長=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=20,tanB=,點D為BC邊上的動點(D不與點B,C重合).以D為頂點作∠ADE=∠B,射線DE交AC邊于點E,過點A作AF⊥AD交射線DE于點F,連接CF.
(1)求證:△ABD∽△DCE;
(2)當DE∥AB時(如圖2),求AE的長;
(3)點D在BC邊上運動的過程中,是否存在某個位置,使得DF=CF?若存在,求出此時BD的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,是銳角,過兩點以為半徑作
(1)如圖,對角線交于點,若,且過點,求的值
(2)與邊的延長線交于點,的延長線交于點,連接,若,的長為,當時,求的度數(shù)(提示:可再備用圖上補全示意圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,I是△ABC的內(nèi)心,O是AB邊上一點,⊙O經(jīng)過B點且與AI相切于I點.若tan∠BAC=,則sin∠C的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關系如圖所示.
(1)當30≤x≤60時,求y與x的函數(shù)關系式;
(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關系式;
(3)銷售價格應定為多少元時,獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店以每千克8元的價格收購蘋果若干千克,銷售了部分蘋果后,余下的蘋果以每千克降價4元銷售,全部售完。銷售金額y(元)與銷售量x(千克)之間的關系如圖所示。請根據(jù)圖象提供的信息完成下列問題:
(1)降價前蘋果的銷售單價是 元/千克;
(2)求降價后銷售金額y(元)與銷售量x千克之間的函數(shù)解析式,并寫出自變量的取值范圍;
(3)該水果店這次銷售蘋果盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了預防新冠肺炎,某藥店銷售甲、乙兩種防護口罩,已知甲口罩每袋的售價比乙口罩多5元,小明從該藥店購買了3袋甲口罩和2袋乙口罩共花費115元.
(1)求該藥店甲、乙兩種口罩每袋的售價分別為多少元?
(2)根據(jù)消費者需求,藥店決定用不超過8000元購進甲、乙兩種口罩共400袋.已知甲口罩每袋的進價為22.2元,乙口罩每袋的進價為17.8元,要使藥店獲利最大,應該購進甲、乙兩種口罩各多少袋,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解初三學生的視力情況,對全體初三學生的視力進行了檢測,將所得數(shù)據(jù)整理后畫出頻率分布直方圖(如圖),已知圖中從左到右第一、二、三、五小組的頻率分別為0.05,0.1,0.25,0.1,如果第四小組的頻數(shù)是180人,那么該校初三共有_____位學生.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司計劃投資萬元引進一條汽車配件流水生產(chǎn)線,經(jīng)過調(diào)研知道該流水生產(chǎn)線的年產(chǎn)量為件,每件總成本為萬元,每件出廠價萬元;流水生產(chǎn)線投產(chǎn)后,從第年到第年的維修、保養(yǎng)費用累計(萬元)如下表:
第年 | ··· | ||||||
維修、保養(yǎng)費用累計萬元 | ··· |
若上表中第年的維修、保養(yǎng)費用累計(萬元)與的數(shù)量關系符合我們已經(jīng)學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中某一個.
(1)求出關于的函數(shù)解析式;
(2)投產(chǎn)第幾年該公司可收回萬元的投資?
(3)投產(chǎn)多少年后,該流水線要報廢(規(guī)定當年的盈利不大于維修、保養(yǎng)費用累計即報費)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com