【題目】如圖,點P(t,0)(t>0)是x軸正半軸上的一點,是以原點為圓心,半徑為1的 圓,且A(﹣1,0),B(0,1),點M是 上的一個動點,連結(jié)PM,作直角△MPM1 , 并使得∠MPM1=90°,∠PMM1=60°,我們稱點M1為點M的對應(yīng)點.
(1)設(shè)點A和點B的對應(yīng)點為A1和B1 , 當(dāng)t=1時,求A1的坐標(biāo);B1的坐標(biāo) .
(2)當(dāng)P是x軸正半軸上的任意一點時,點M從點A運動至點B,求M1的運動路徑長 .
【答案】
(1)(1,2 );(1+ , )
(2)
【解析】解:(1)如圖1,
當(dāng)t=1時,則AP=2,A1P⊥AP,
∵∠PAA1=60°,
∴PA1=2 ,
∴A1(1,2 ),
BP=OP= ,∠BPO=45°,
∴∠B1PC=∠PBO=90°﹣∠BPO=45°,PC=B1C,
∵∠B1BP=60°,
∴PB1= ,
∴PC=B1C= ,
∴B1(1+ , ),
所以答案是;(1,2 ),(1+ , );(2)當(dāng)M在A點時,PM=1+t,PM1=(1+t) ,點M從點A運動至點B,設(shè)∠APB=n°,則PM1也旋轉(zhuǎn)n°,
∴M1的運動路徑長= ,
∵ 的長= = = ,
∴M1的運動路徑長= .
所以答案是: .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A1 , A2 , A3 , …,An是x軸上的點,且OA1=A1A2=A2A3=…=AnAn+1=1,分別過點A1 , A2 , A3 , …,An+1作x軸的垂線交一次函數(shù) 的圖象于點B1 , B2 , B3 , …,Bn+1 , 連接A1B2 , B1A2 , A2B3 , B2A3 , …,AnBn+1 , BnAn+1依次產(chǎn)生交點P1 , P2 , P3 , …,Pn , 則Pn的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:
筆試 | 面試 | 體能 | |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分.根據(jù)規(guī)定,請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是雙曲線y= (x>0)上的一點,連結(jié)OA,在線段OA上取一點B,作BC⊥x軸于點C,以BC的中點為對稱中心,作點O的中心對稱點O′,當(dāng)O′落在這條雙曲線上時, = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AB=3cm,AD=6cm,∠ADC的角平分線DE交BC于點E,交AC于點F,CG⊥DE,垂足為G,DG= cm,則EF的長為( )
A.2cm
B. cm
C.1cm
D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進一步緩解城市交通壓力,義烏市政府推出公共自行車,公共自行車在任何一個網(wǎng)店都能實現(xiàn)通租通還,某校學(xué)生小明統(tǒng)計了周六校門口停車網(wǎng)點各時段的借、還自行車數(shù),以及停車點整點時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y的值表示8:00點時的存量,x=2時的y值表示9:00點時的存量…以此類推,他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.
時段 | x | 還車數(shù) | 借車數(shù) | 存量y |
7:00﹣8:00 | 1 | 7 | 5 | 15 |
8:00﹣9:00 | 2 | 8 | 7 | n |
… | … | … | … | … |
根據(jù)所給圖表信息,解決下列問題:
(1)m= , 解釋m的實際意義:;
(2)求整點時刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知10:00﹣11:00這個時段的借車數(shù)比還車數(shù)的一半還要多2,求此時段的借車數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個單位,得到△A1B1C1;
②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A2B2C2 .
(2)求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了一次初三科技小制作比賽,有A、B、C、D四個班共提供了100件參賽作品,C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖1和圖2兩幅尚不完整的統(tǒng)計圖中.
(1)B班參賽作品有多少件?
(2)請你將圖2的統(tǒng)計圖補充完整;
(3)通過計算說明,哪個班的獲獎率高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用如圖所示的兩個轉(zhuǎn)盤進行“配紫色”游戲,每個轉(zhuǎn)盤都被分成面積相等的三個扇形,游戲者同時轉(zhuǎn)動兩個轉(zhuǎn)盤,配成紫色的概率是多少?請用樹狀圖或列表說明理由(藍色和紅色能配成紫色).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com