【題目】ABC的頂點(diǎn)坐標(biāo)為A2,3B3,1C1,2,以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到ABC,點(diǎn)B、C分別是點(diǎn)B、C的對(duì)應(yīng)點(diǎn).

1求過點(diǎn)B的反比例函數(shù)解析式;

2求線段CC的長.

【答案】1y=2

【解析】

試題分析:1據(jù)圖形旋轉(zhuǎn)方向以及旋轉(zhuǎn)中心和旋轉(zhuǎn)角度得出對(duì)應(yīng)點(diǎn),根據(jù)待定系數(shù)法,即可求出解;2根據(jù)勾股定理求得OC,然后根據(jù)旋轉(zhuǎn)的旋轉(zhuǎn)求得OC,最后根據(jù)勾股定理即可求得.

試題解析:1如圖所示:由圖知B點(diǎn)的坐標(biāo)為3,1,根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時(shí)針,旋轉(zhuǎn)角度90° 點(diǎn)B的對(duì)應(yīng)點(diǎn)B的坐標(biāo)為1,3

設(shè)過點(diǎn)B的反比例函數(shù)解析式為y=, k=3×1=3,

過點(diǎn)B的反比例函數(shù)解析式為y=

2C1,2, OC==

∵△ABC以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,

OC=OC=, CC=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形 ABCD 是⊙ O 的內(nèi)接四邊形,且A:B:C1:2:3,則 D ___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球比賽的記分為:勝一場得3分,平一場得1分,負(fù)一場得0分,一隊(duì)打了14場比賽,負(fù)5場,共得19分,那么這個(gè)隊(duì)勝了( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列哪種四邊形的兩條對(duì)角線互相垂直平分且相等( 。

A. 矩形 B. 菱形 C. 平行四邊形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9的平方根是(
A.3
B.﹣3
C.±3
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程(x﹣3)2=m2的解是( 。

A. x1=m,x2=﹣m B. x1=3+m,x2=3﹣m

C. x1=3+m,x2=﹣3﹣m D. x1=3+m,x2=﹣3+m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)俱樂部有一種秘密的記帳方式.當(dāng)他們收入300元時(shí),記為-240;當(dāng)他們用去300元時(shí),記為360.猜一猜,當(dāng)他們用去100元時(shí),可能記為多少?當(dāng)他們收入100元時(shí),可能記為多少?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知任意三角形的三邊長,如何求三角形面積?

古希臘的幾何學(xué)家海倫解決了這個(gè)問題,在他的著作《度量論》一書中給出了計(jì)算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明

例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:

∵a=3,b=4,c=5

∴p==6

∴S===6

事實(shí)上,對(duì)于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.

如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;

(2)求△ABC的內(nèi)切圓半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是 (

A. 零表示什么也沒有

B. 一場比賽贏4個(gè)球得+4分,3分表示輸了3個(gè)球

C. 7沒有符號(hào)

D. 零既不是正數(shù),也不是負(fù)數(shù)

查看答案和解析>>

同步練習(xí)冊答案