【題目】在長方形ABCD中,AB8cm,BC4cm,動點P從點A出發(fā),沿路線ABC作勻速運動,速度為2cm/秒,運動的時間為t.

1)用含t的代數(shù)式表示點P運動的路程為 cm,當t4.5時,點P在邊 上;

2)當點P在線段AB上運動時,寫出△ADP的面積Scm2)與t(秒)之間的關(guān)系式,并求當t為何值時,S8;

3)在點P運動的過程中,△ADP的形狀也隨之改變,判斷并直接寫出t為何值時,△ADP是等腰三角形.

【答案】12tBC;(2,當時,S=8;(3)當 △ADP是等腰三角形.

【解析】

1)根據(jù)路程=速度時間,即可得到答案;

2)由AD=BC=4,由三角形的面積公式,即可得到St的關(guān)系式,然后再把S=8代入,求出t的值即可;

3)由△ADP是等腰三角形,可分為兩種情況討論;①當點PAB上時,AD=AP=4;②當點PBC上時,有AP=DP;計算即可得到答案.

1)如圖,

∵動點P從點A出發(fā),沿路線A→B→C作勻速運動,速度為2cm/秒,運動的時間為t秒,∴用含t的代數(shù)式表示點P運動的路程為: cm.

t4.5時,路程為:

AB8cm,8<9,

所以此時點P運動到BC上,

故答案為:2t,BC

2)∵四邊形ABCD是長方形,

AD=BC=4AP=2t,

S=4t,(

S=8時,代入得:

;

3)∵△ADP是等腰三角形,

AD=APAP=DP;

①當點PAB上時,有

AD=AP,

2t=4,解得:;

②當點PBC上時,有

AP=DP,

此時點PBC的中點,

,

AB+BP=8+2=10,

∴點P運動的時間為:s

綜合上述,當△ADP是等腰三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把ABC紙片沿DE折疊,當A落在四邊形BCDE內(nèi)時,則∠A與∠1+2之間有始終不變的關(guān)系是( 。

A.A=1+2B.2A=1+2

C.3A=1+2D.3A=2(∠1+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的頂點為B(-1,3),與軸的交點A在點(-3,0)和(-2,0)之間,以下結(jié)論:①;②;③;④; ⑤其中正確的有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向南騎行2 km,到達A村,繼續(xù)向南騎行3 km到達B村,然后向北騎行9 km到達C村,最后回到郵局.

(1)以郵局為原點,以向北為正方向,用0.5 cm表示1 km,畫出數(shù)軸,并在該數(shù)軸上表示出A,B,C三個村莊的位置.

(2)C村離A村有多遠?

(3)郵遞員一共騎了多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結(jié)BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達式;

(2)當P位于y軸右邊的拋物線上運動時,過點C作CF直線l,F(xiàn)為垂足,當點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與OBC相似?并求出此時點P的坐標;

(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結(jié)PC,PB,請問PBC的面積S能否取得最大值?若能,請出最大面積S,并求出此時點P的坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(原題)已知直線ABCD,點P為平行線AB,CD之間的一點.如圖1,若∠ABP=50°,∠CDP=60°,BE平分ABP,DE平分∠CDP,∠BED的度數(shù)

(探究)如圖2,當點P在直線AB的上方時,若∠ABP=α,∠CDP=β,∠ABP和CDP的平分線交于點E1,∠ABE1∠CDE1的角平分線交于點E2,∠ABE2∠CDE2的角平分線交于點E3,…以此類推,求∠En的度數(shù).

(變式)如圖3,ABP的角平分線的反向延長線和CDP的補角的角平分線交于點E,試猜想P與E的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關(guān)注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學生共有   人,扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角為   度;

(2)請補全條形統(tǒng)計;

(3)若該中學共有學生1200人,估計該中學學生對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)在一次蠟燭燃燒試驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度 (厘米)與燃燒時間 (小時)之間的關(guān)系如圖所示,其中乙蠟燭燃燒時之間的函數(shù)關(guān)系式是.

(1)甲蠟燭燃燒前的高度是_________厘米,乙蠟燭燃燒的時間是________小時.

(2)求甲蠟燭燃燒時之間的函數(shù)關(guān)系式.

(3)求出圖中交點的坐標,并說明點的實際意義.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】線段AB和線段CD交于點O,OE平分∠AOC,F為線段AB上一點(不與點A和點O重合)過點F FG//OE,交線段CD于點G,若∠AOD=110°,則∠AFG的度數(shù)為_____°.

查看答案和解析>>

同步練習冊答案