【題目】如圖1,AB的直徑,為圓弧上的一點(diǎn),,垂足為DAC平分,AB的延長(zhǎng)線(xiàn)交直線(xiàn)于點(diǎn)

1)求證:的切線(xiàn);

2)若,B的中點(diǎn),,垂足為點(diǎn),求的長(zhǎng);

3)如圖2,連接OD于點(diǎn),若,求的值.

【答案】1)證明見(jiàn)解析;(2;(3

【解析】

1)連結(jié)OC,如圖1,根據(jù)平行線(xiàn)的判定得OCAD,進(jìn)而求出DE為⊙O的切線(xiàn);

2)如圖1,由BOE的中點(diǎn),AB為直徑得到OB=BE=2,OC=2,在RtOCE中,由于OE=2OC,根據(jù)含30度的直角三角形三邊的關(guān)系得∠OEC=30°,則∠COE=60°,由CFAB得∠OFC=90°,所以∠OCF=30°,再根據(jù)含30度的直角三角形三邊的關(guān)系得,

3)連結(jié)OC,如圖2,先證明△OCG∽△DAG,利用相似的性質(zhì)得,再證明△ECO∽△EDA,利用相似比得到,設(shè)⊙O的半徑為R,OE=x,代入求得,最后在RtOCE中,根據(jù)正切的定義求解.

解:(1)連結(jié)OC,如圖1

OA=OC,

∴∠1=3

∵∠1=2,

∴∠2=3,

ADCO

ADDC,

CODE,

DC為⊙O的切線(xiàn);

2)解:如圖1

直徑,B的中點(diǎn).

中,

,

3)連結(jié)OC,如圖2

設(shè)的半徑為R,

解得

由勾股定理,得,

中,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)My=-x2+2bx+c與直線(xiàn)ly=9x+14交于點(diǎn)A,其中點(diǎn)A的橫坐標(biāo)為-2

1)請(qǐng)用含有b的代數(shù)式表示c: ;

2)若點(diǎn)B在直線(xiàn)l上,且B的橫坐標(biāo)為-1,點(diǎn)C的坐標(biāo)為(b,5).

①若拋物線(xiàn)M還過(guò)點(diǎn)B,直接寫(xiě)出該拋物線(xiàn)的解析式;

②若拋物線(xiàn)M與線(xiàn)段BC恰有一個(gè)交點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知Px1y1Qx2,y2),定義P、Q兩點(diǎn)的橫坐標(biāo)之差的絕對(duì)值與縱坐標(biāo)之差的絕對(duì)值的和為PQ兩點(diǎn)的直角距離,記作dP,Q).即dP,Q)=|x2x1|+|y2y1|

如圖1,在平面直角坐標(biāo)系xOy中,A14),B5,2),則dA,B)=|51|+|24|6

1)如圖2,已知以下三個(gè)圖形:

①以原點(diǎn)為圓心,2為半徑的圓;

②以原點(diǎn)為中心,4為邊長(zhǎng),且各邊分別與坐標(biāo)軸垂直的正方形;

③以原點(diǎn)為中心,對(duì)角線(xiàn)分別在兩條坐標(biāo)軸上,對(duì)角線(xiàn)長(zhǎng)為4的正方形.

點(diǎn)P是上面某個(gè)圖形上的一個(gè)動(dòng)點(diǎn),且滿(mǎn)足dO,P)=2總成立.寫(xiě)出符合題意的圖形對(duì)應(yīng)的序號(hào)   

2)若直線(xiàn)ykx+3)上存在點(diǎn)P使得dO,P)=2,求k的取值范圍.

3)在平面直角坐標(biāo)系xOy中,P為動(dòng)點(diǎn),且dO,P)=3,⊙M圓心為Mt,0),半徑為1.若⊙M上存在點(diǎn)N使得PN1,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行漢字聽(tīng)寫(xiě)比賽,每位學(xué)生聽(tīng)寫(xiě)漢字40個(gè),比賽結(jié)束后隨機(jī)抽查部分學(xué)生聽(tīng)寫(xiě)正確的字?jǐn)?shù),以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖表.

頻數(shù)分布表

組別

正確的字?jǐn)?shù)

人數(shù)

0.5~8.5

10

8.5~16.5

15

16.5~24.5

25

24.5~32.5

32.5~40.5

根據(jù)以上信息解決下列問(wèn)題:

1)補(bǔ)全條形統(tǒng)計(jì)圖;

2)扇形統(tǒng)計(jì)圖中所對(duì)應(yīng)的圓心角的度數(shù)是_________;

3)若該校共有1210名學(xué)生,如果聽(tīng)寫(xiě)正確的字?jǐn)?shù)少于25,則定為不合格;請(qǐng)你估計(jì)這所學(xué)校本次比賽聽(tīng)寫(xiě)不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°

1)用尺規(guī)作圖作AB邊上的中垂線(xiàn)DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫(xiě)作法和證明);

2)連接BD,求證:BD平分∠CBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,小明在紙上畫(huà)折線(xiàn),他每次都是按水平方向畫(huà),再按豎直方向畫(huà),且每次畫(huà)完后的兩條線(xiàn)段的長(zhǎng)度相等,如果第次畫(huà)的兩條線(xiàn)段的長(zhǎng)度都是,第次畫(huà)的兩條線(xiàn)段的長(zhǎng)度都為,...,第次畫(huà)的兩條線(xiàn)段長(zhǎng)度都是,請(qǐng)你回答下列問(wèn)題,說(shuō)明理由.

(1)畫(huà)完第次后,小明所畫(huà)的折線(xiàn)的總長(zhǎng)度是多少?

(2)畫(huà)完第次后,小明所畫(huà)的折線(xiàn)的總長(zhǎng)度是多少(用含的代數(shù)式表示)?

(3)當(dāng)小明所畫(huà)的折線(xiàn)總長(zhǎng)度為時(shí),試求折線(xiàn)的最后兩條線(xiàn)段的長(zhǎng)度和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.已知四邊形ABCD是平行四邊形,結(jié)合作圖痕跡,下列說(shuō)法不正確的是(

A.垂直

B.

C.平分

D.的周長(zhǎng)為4,則平行四邊形的周長(zhǎng)為8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 請(qǐng)閱讀下列材料,并解答相應(yīng)的問(wèn)題:

將若干個(gè)數(shù)組成一個(gè)正方形數(shù)陣,若任意一行,一列及對(duì)角線(xiàn)上的數(shù)字之和都相等,則稱(chēng)具有這種性質(zhì)的數(shù)字方陣為“幻方”中國(guó)古代稱(chēng)“幻方”為“河圖“、“洛書(shū)“等,例如,下面是三個(gè)三階幻方,是將數(shù)字1,2,34,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每條對(duì)角線(xiàn)上的三個(gè)數(shù)之和相等.

1)設(shè)圖1的三階幻方中間的數(shù)字是x,用x的代數(shù)式表示幻方中9個(gè)數(shù)的和為   ;

2)請(qǐng)你將下列九個(gè)數(shù):﹣10、﹣8、﹣6、﹣4、﹣20、2、4、6分別填入圖2方格中,使得每行、每列、每條對(duì)角線(xiàn)上的三個(gè)數(shù)之和都相等;

3)圖3是一個(gè)三階幻方,那么標(biāo)有x的方格中所填的數(shù)是   ;

4)如圖4所示的每一個(gè)圓中分別填寫(xiě)了1、2319中的一個(gè)數(shù)字(不同的圓中填寫(xiě)的數(shù)字各不相同),使得圖中每一個(gè)橫或斜方向的線(xiàn)段上幾個(gè)圓內(nèi)的數(shù)之和都相等,現(xiàn)在已知該圖中七個(gè)圓內(nèi)的數(shù)字,則圖中的x   ,y   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=-x2+bx+c與x軸交于點(diǎn)A(-1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,線(xiàn)段BC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)E、P為線(xiàn)段BC上的一點(diǎn)(不與點(diǎn)B、C重合),過(guò)點(diǎn)P作PFy軸交拋物線(xiàn)于點(diǎn)F,連結(jié)DF.設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求此拋物線(xiàn)所對(duì)應(yīng)的函數(shù)表達(dá)式.

(2)求PF的長(zhǎng)度,用含m的代數(shù)式表示.

(3)當(dāng)四邊形PEDF為平行四邊形時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案