【題目】如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形(  )

A. , B. ,

C. , D. ,

【答案】B

【解析】

根據(jù)平行四邊形的判定方法,對每個選項進行篩選可得答案.

A、∵OA=OC,OB=OD,

∴四邊形ABCD是平行四邊形,故A選項不符合題意;

B、AB=CD,AO=CO不能證明四邊形ABCD是平行四邊形,故本選項符合題意;

C、∵AD//BC,AD=BC,

∴四邊形ABCD是平行四邊形,故C選項不符合題意;

D、∵AB∥CD,

∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,

∵∠BAD=∠BCD,

∴∠ABC=∠ADC,

∵∠BAD=∠BCD,∠ABC=∠ADC,

∴四邊形ABCD是平行四邊形,故D選項不符合題意,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)光盤行動,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖。

(1)這次被調(diào)查的同學(xué)共有 名;

(2)把條形統(tǒng)計圖補充完整;

(3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供200人用一餐。據(jù)此估算,該校18000名學(xué)生一餐浪費的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑BC=7,延長CB到A,割線AED交半圓于點E,D,且AE=ED=3,則AB的長為( )

A.
B.2
C.
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB添加一個條件,不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,E、F分別是邊AD、BC的中點,AC分別交BE、DFC、H.請判斷下列結(jié)論:(1)BE=DF;(2)AG=GH=HC;(3)EG=BG;(4)SABE=3SAGE.其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:y= x,過點M(2,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1作x軸的垂線交直線l于N1 , 過點N1作直線l的垂線交x軸于點M2 , …;按此作法繼續(xù)下去,則點M8坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市的電視塔AB坐落在湖邊,數(shù)學(xué)老師帶領(lǐng)學(xué)生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為米(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與X軸交于點A、B兩點B處的坐標(biāo)為(3,0),與y軸交于c(0,﹣3),點P是直線BC下方拋物線上的動點.

(1)求出二次函數(shù)的解析式;
(2)連接PO、PC,并將△POC沿y軸對折,得到四邊形POP′C,那么是否存在點P,使得四邊形POP′C為菱形?若存在,求出點P的坐標(biāo),若存在,請說明理由;
(3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

同步練習(xí)冊答案