【題目】在△ABC中,∠B=25°,AD是BC邊上的高,并且AD2=BDCD,則∠BCA的度數(shù)為多少?
【答案】65°或115°.
【解析】
試題分析:解答此題的關(guān)鍵的是利用AD2=BD×CD,推出△ABD∽△ADC,然后利用對(duì)應(yīng)角相等即可知∠BCA的度數(shù).注意分為高在三角形內(nèi)與高在三角形外兩種.
解:如圖1:∵∠B=25°,AD是BC邊上的高,
∴∠BAD=65°,
∵AD2=BD.CD,
∴,AD⊥BC,
∴△ABD∽△CDA,
∴∠BCA=∠BAD=65°.
如圖2:∵∠B=25°,AD是BC邊上的高,
∴∠BAD=65°,
∵AD2=BD.CD,
∴,AD⊥BC,
∴△ABD∽△CDA,
∴∠ACD=∠BAD=65°,
∴∠ACB=180°﹣∠ACD=115°.
∴∠BCA的度數(shù)為65°或115°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,OE垂直于弦AB,垂足為點(diǎn)D,交⊙O于點(diǎn)C,∠EAC=∠CAB.
(1)求證:直線AE是⊙O的切線;
(2)若AB=8,sin∠E=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三個(gè)內(nèi)角互不相等的△ABC中,最小的內(nèi)角為∠A,則在下列四個(gè)度數(shù)中,∠A最大可取( )
A. 30° B. 59° C. 60° D. 89°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由方程x﹢t=5,y﹣2t﹦4組成的方程組可得x,y的關(guān)系式是
A. x﹢y﹦9 B. 2x﹢y﹦7 C. 2x﹢y﹦14 D. x﹢y﹦3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、C、D、E、F為⊙O的六等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿OE弧EFFO的路線做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t,∠BPD的度數(shù)為y,則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵?)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正方形在平面直角坐標(biāo)系中三個(gè)頂點(diǎn)的坐標(biāo)為(-2,-3),(-2,1),(2,1),則第四個(gè)頂點(diǎn)的坐標(biāo)為( )
A. (2,2) B. (3,2) C. (2,-3) D. (2,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將二次函數(shù)y=x2﹣2x+3化為y=(x﹣h)2+k的形式,結(jié)果為( )
A.y=(x+1)2+4 B.y=(x﹣1)2+4
C.y=(x+1)2+2 D.y=(x﹣1)2+2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com