【題目】已知A是雙曲線y=在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限,已知點C的位置始終在一函數(shù)圖象上運動,則這個函數(shù)解析式為( 。
A. y=﹣ B. y=﹣(x>0) C. y=﹣6x(x>0) D. y=6x(x>0)
【答案】B
【解析】
設(shè)點A的坐標(biāo)為(a,),連接OC,則OC⊥AB,表示出OC,過點C作CD⊥x軸軸于點D,設(shè)出點C坐標(biāo),在RT△OCD中,利用勾股定理可得出x的值,繼而得出y與x的函數(shù)關(guān)系式.
設(shè)A(a,),
∵點A與點B關(guān)于原點對稱,
∴OA=OB,
∵△ABC為等邊三角形,
∴AB⊥OC,OC=AO,
∵AO=,
,
過點C作CD⊥x軸于點D,
則可得∠AOD=∠OCD(都是∠COD的余角),
設(shè)點C的坐標(biāo)為(x,y),則,即,
解得:,
在RT△COD中,,即,
將代入,可得:,
故,,
則xy=-6,
故可得:.
故選B..
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=﹣x2+4x+c的圖象經(jīng)過A(1,y1),B(﹣1,y2),C(2+ ,y3)三點,則y1、y2、y3的大小關(guān)系是( )
A. y1<y2<y3 B. y1<y3<y2 C. y2<y3<y1 D. y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 (1)如圖1,等腰Rt△ABC中,∠CAB=90°,點H在BC邊上,連AH,作等腰Rt△HFA,∠HFA=90°求證:AF=CF.
(2)如圖2,等腰Rt△ABC中,∠CAB=90°,D在BC上,AD⊥AE,AD=AE,G為CD中點,求證:AG⊥BE
(3)如圖3,等腰Rt△ABC中,∠BAC=90°,過C作CD∥AB, CD=8,連AD,在AD上取一點E使AE=AB,連BE交AC于F,若AF=9,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC于E,AF⊥CD于F,且∠EAF=60°,BE=2cm,DF=3cm,試求平行四邊形ABCD的周長及面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著私家車的增加,交通也越來越擁擠,通常情況下,某段公路上車輛的行駛速度(千米/時)與路上每百米擁有車的數(shù)量x(輛)的關(guān)系如圖所示,當(dāng)x≥8時,y與x成反比例函數(shù)關(guān)系,當(dāng)車速度低于20千米/時,交通就會擁堵,為避免出現(xiàn)交通擁堵,公路上每百米擁有車的數(shù)量x應(yīng)該滿足的范圍是( 。
A. x<32 B. x≤32 C. x>32 D. x≥32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=k1x+b與x軸、y軸相交于P、Q兩點,與y=的圖象相交于A(﹣2,m)、B(1,n)兩點,連接OA、OB,給出下列結(jié)論:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b>的解集是x<﹣2或0<x<1,其中正確的結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N分別是BC、DC的中點,AM=4,AN=3,且∠MAN=60°,則AB的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩點的坐標(biāo)分別為(0,6),(0,3),點P為x軸正半軸上一動點,過點A作AP的垂線,過點B作BP的垂線,兩垂線交于點Q,連接PQ,M為線段PQ的中點.
(1)求證:A、B、P、Q四點在以M為圓心的同一個圓上;
(2)當(dāng)⊙M與x軸相切時,求點Q的坐標(biāo);
(3)當(dāng)點P從點(2,0)運動到點(3,0)時,請直接寫出線段QM掃過圖形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com