【題目】如圖,在平行四邊形ABCD中,M、N分別是BCDC的中點,AM4,AN3,且∠MAN60°,則AB的長是_____

【答案】.

【解析】

首先延長DCAM交于E,過點EEHAN于點H,易證得ABM≌△ECM,即可得AB=NE,然后由AM=4,AN=3,且∠MAN=60°,求得AH,NHEH的長,繼而求得EN的長,則可求得答案.

解:延長DCAM交于E,過點EEHAN于點H,如圖.

∵四邊形ABCD為平行四邊形,

ABCE,

∴∠BAM=∠CEM,∠B=∠ECM

MBC的中點,

BMCM

在△ABM和△ECM中,

,

∴△ABM≌△ECMAAS),

ABCDCE,AMEM4,

N為邊DC的中點,

NE3NCAB,即ABNE,

AN3,AE2AM8,且∠MAN60°,

∴∠AEH30°,

AHAE4,

EH

NHAHAN431,

EN7

AB×7

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校綜合實踐活動小組的同學欲測量公園內(nèi)一棵樹DE的高度.他們在這棵樹正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB2米,臺階AC的坡度為1(即ABBC=1),且BC、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A是雙曲線y=在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限,已知點C的位置始終在一函數(shù)圖象上運動,則這個函數(shù)解析式為( 。

A. y=﹣ B. y=﹣(x>0) C. y=﹣6x(x>0) D. y=6x(x>0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)填寫下表,觀察被開方數(shù)的小數(shù)點與算術(shù)平方根的小數(shù)點的移動規(guī)律:

0.0016

0.16

16

1600

0.04

0.4

2)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:

①已知,則

②已知,,則 倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩種糖果,原價分別為每千克a元和b元.根據(jù)調(diào)查,將兩種糖果按甲種糖果x千克與乙種糖果y千克的比例混合,取得了較好的銷售效果.現(xiàn)在糖果價格有了調(diào)整:甲種糖果單價下降15%,乙種糖果單價上漲20%,但按原比例混合的糖果單價恰好不變,則等于( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論①△AEF≌△AED;②∠AED=45°;③BE+DC=DE; ④BE+DC=DE,其中正確的是(  。

A. ②④ B. ①④ C. ②③ D. ①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、BC是直線l上的三個點,∠DAB=∠DBE=∠ECBa,且BDBE

1)求證:ACAD+CE;

2)若a120°,點F在直線l的上方,BEF為等邊三角形,補全圖形,請判斷ACF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC平分∠BAD,∠B+∠D180°,CEAD于點E,AD12 cmAB7 cm,求DE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班級同學從學校出發(fā)去太陽島研學旅行,一部分乘坐大客車先出發(fā),余下的同學20min后乘坐小轎車沿同一路線出行,大客車中途停車等候5min,小轎車趕上來之后,大客車以出發(fā)時速度的繼續(xù)行駛,小轎車保持原速度不變.小轎車司機因路線不熟錯過了景點入口,在駛過景點入口6 km時,原路提速返回,恰好與大客車同時到達景點入口.兩車距學校的路程S(單位:km)和行駛時間t(單位:min)之間的函數(shù)關(guān)系如圖所示.

請結(jié)合圖象解決下面問題:

(1)學校到景點的路程為________km________;

(2)在小轎車司機駛過景點入口時,大客車離景點入口還有多遠?

(3)小轎車司機到達景點入口時發(fā)現(xiàn)本路段限速80 km/h,請你幫助小轎車司機計算折返時是否超速?

查看答案和解析>>

同步練習冊答案