如圖,過點(diǎn)O作直線與雙曲線y=(k≠0)交于A、B兩點(diǎn),過點(diǎn)B作BC⊥x軸于點(diǎn)C,作BD⊥y軸于點(diǎn)D.在x軸上分別取點(diǎn)E、F,使點(diǎn)A、E、F在同一條直線上,且AE=AF.設(shè)圖中矩形ODBC的面積為S1,△EOF的面積為S2,則S1、S2的數(shù)量關(guān)系是( 。
| A. | S1=S2 | B. | 2S1=S2 | C. | 3S1=S2 | D. | 4S1=S2 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
閱讀下面材料:小騰遇到這樣一個(gè)問題:如圖1,在△ABC中,點(diǎn)D在線段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的長.
小騰發(fā)現(xiàn),過點(diǎn)C作CE∥AB,交AD的延長線于點(diǎn)E,通過構(gòu)造△ACE,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖 2).
請回答:∠ACE的度數(shù)為 ,AC的長為 .
參考小騰思考問題的方法,解決問題:
如圖 3,在四邊形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC與BD交于點(diǎn)E,AE=2,BE=2ED,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點(diǎn)B,C的切線,且∠BDC=110°.連接AC,則∠A的度數(shù)是 °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
布袋中裝有3個(gè)紅球和6個(gè)白球,它們除顏色外其他都相同,如果從布袋里隨機(jī)摸出一個(gè)球,那么所摸到的球恰好為紅球的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
據(jù)統(tǒng)計(jì)我國2014年前四月已開工建造286萬套保障房,其中286萬用科學(xué)記數(shù)法表示為( 。
| A. | 2.86×106 | B. | 2.86×107 | C. | 28.6×105 | D. | 0.286×107 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,m)在第一象限,若點(diǎn)A關(guān)于x軸的對稱點(diǎn)B在直線y=﹣x+1上,則m的值為( 。
| A. | ﹣1 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com