【題目】在一次課題學(xué)習(xí)中,老師讓同學(xué)們合作編題.某學(xué)習(xí)小組受趙爽弦圖的啟發(fā),編寫了下面這道題,請你來解一解.
如圖,將矩形ABCD的四邊BA、CB、DC、AD分別延長至E、F、G、H,使得AE=CG,BF=DH,連結(jié)EF、FG、GH、HE.

(1)求證:四邊形EFGH為平行四邊形;
(2)若矩形ABCD是邊長為1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的長.

【答案】
(1)

證明:在矩形ABCD中,AD=BC,∠BAD=∠BCD=90°.

又∵BF=DH,

∴AD+DH=BC+BF

即AH=CF.

在Rt△AEH中,EH=.

在Rt△CFG中,F(xiàn)G=.

∵AE=CG,

∴EH=FG.

同理得,EF=HG.

∴四邊形EFGH為平行四邊形.


(2)

解:在正方形ABCD中,AB=AD=1.

設(shè)AE=x,則BE=x+1.

∵在Rt△BEF中,∠BEF=45°.

∴BE=BF.

∵BF=DH,

∴DH=BE=x+1.

∴AH=AD+DH=x+2.

∵在Rt△AEH中,tan∠AEH=2,

∴AH=2AE.

∴2+x=2x.

∴x=2.

即AE=2.


【解析】(1)在矩形ABCD中,AD=BC,∠BAD=∠BCD=90°.根據(jù)BF=DH,得出AH=CF.根據(jù)勾股定理 EH=.FG=.
由AE=CG得出EH=FG.EF=HG;從而證明四邊形EFGH為平行四邊形.
(2)在正方形ABCD中,AB=AD=1; 設(shè)AE=x,則BE=x+1;在Rt△BEF中,∠BEF=45°.得出BE=BF=DH=x+1;AH=AD+DH=x+2.
在Rt△AEH中,利用正切即可求出AE的長.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識,掌握等腰三角形的兩個底角相等(簡稱:等邊對等角),以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點(diǎn)C的中點(diǎn),點(diǎn)DOB上,點(diǎn)EOB的延長線上,當(dāng)正方形CDEF的邊長為2時,則陰影部分的面積為( 。

A. 2π﹣8 B. 4π﹣8 C. 2π﹣4 D. 4π﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點(diǎn)分別在相互垂直的射線OM、ON上滑動,下列結(jié)論:
①若C、O兩點(diǎn)關(guān)于AB對稱,則OA=2 ;
②C、O兩點(diǎn)距離的最大值為4;
③若AB平分CO,則AB⊥CO;
④斜邊AB的中點(diǎn)D運(yùn)動路徑的長為 ;
其中正確的是(把你認(rèn)為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將太陽半徑696000km這個數(shù)值用科學(xué)記數(shù)法表示是 km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式x﹣2>1的解集是(  )
A.x>1
B.x>2
C.x>3
D.x>4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:ax2﹣4a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.

(1)直接寫出甲投放的垃圾恰好是A類的概率;

(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家統(tǒng)計(jì)局4月15日發(fā)布數(shù)據(jù),初步核算,2015年一季度全國國內(nèi)生產(chǎn)總值為140667億元,其中數(shù)據(jù)140667用科學(xué)記數(shù)法表示為( 。
A.1.40667×105
B.1.40667×106
C.14.0667×104
D.0.140667×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=(x﹣3)2 , B=(x+2)(x﹣2)
(1)化簡多項(xiàng)式2A﹣B;
(2)若2A﹣B=2,求x的值.

查看答案和解析>>

同步練習(xí)冊答案