【題目】(1)如圖1,正方形ABCD和正方形DEFG,G在AD邊上,E在CD的延長線上.求證:AE=CG,AE⊥CG;
(2)如圖2,若將圖1中的正方形DEFG繞點D順時針旋轉(zhuǎn)角度θ(0°<θ<90°),此時AE=CG還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)如圖3,當(dāng)正方形DEFG繞點D順時針旋轉(zhuǎn)45°時,延長CG交AE于點H,當(dāng)AD=4,DG=時,求線段CH的長.
【答案】(1)(2)見解析;(3).
【解析】試題分析:(1)先判斷出△ADE≌△CDG,然后用互余判斷出垂直;
(2)先判斷出△ADE≌△CDG,然后用互余判斷出垂直;
(3)先判斷出△ADE≌△CDG,然后用互余判斷出垂直,然后用勾股定理計算出CM,AM最后用相似即可.
試題解析:(1)在△ADE和△CDG中,
DE=DG,∠ADE=∠CDG,AD=CD,
∴△ADE≌△CDG,
∴AE=CG,∠AED=∠CGD,
∵∠DCG+∠CGD=90°,
∴∠DCG+∠AED=90°,
∴AE⊥CG.
(2)∵∠CDG+∠ADG=90°,∠ADE+∠ADG=90°,
∴∠CDG=∠ADE
在△ADE和△CDG中,
DE=DG,∠ADE=∠CDG,AD=CD,
∴△ADE≌△CDG,
∴AE=CG,∠AED=∠CGD,
∵∠DCG+∠CGD=90°,
∴∠DCG+∠AED=90°,
∴AE⊥CG.
(3)如圖,
過點E作AD的垂線,垂足為N,連接AC,
在△ADE和△CDG中,
DE=DG,∠ADE=∠CDG,AD=CD,
∴△ADE≌△CDG,
∴∠EAD=∠DCM
∴tan∠DCM=,
∴DM=CD=
∴CM==,AM=AD﹣DM=
∵△CMD∽△AMH,
∴,
∴AH=,
∴CH==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展“青少年科技創(chuàng)新比賽”活動,“喜洋洋”代表隊設(shè)計了一個遙控車沿直線軌道AC做勻速直線運(yùn)動的模型.甲、乙兩車同時分別從A,B出發(fā),沿軌道到達(dá)C處,在AC上,甲的速度是乙的速度的1.5倍,設(shè)t分后甲、乙兩遙控車與B處的距離分別為d1,d2(單位:米),則d1,d2與t的函數(shù)關(guān)系如圖,試根據(jù)圖象解決下列問題.
(1)填空:乙的速度v2=________米/分;
(2)寫出d1與t的函數(shù)表達(dá)式;
(3)若甲、乙兩遙控車的距離超過10米時信號不會產(chǎn)生相互干擾,試探究什么時間兩遙控車的信號不會產(chǎn)生相互干擾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,對角線AC、BD交于點O,∠AOD=120°,E為BD上任意點,P為AE中點,則PO+PB的最小值為 ( )
A.B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
如果函數(shù)y=f(x)滿足:對于自變量x的取值范圍內(nèi)的任意x1,x2,
(1)若,都有,則稱f(x)是增函數(shù);
(2)若,都有,則稱f(x)是減函數(shù).
例題:證明函數(shù)f(x)=是減函數(shù).
證明:設(shè),
∵,
∴.
∴.即.
∴.
∴函數(shù)是減函數(shù).
根據(jù)以上材料,解答下面的問題:
已知函數(shù)f(x)=(x<0),例如f(-1)==-3,f(-2)==-
(1)計算:f(-3)= ;
(2)猜想:函數(shù)f(x)=(x<0)是 函數(shù)(填“增”或“減”);
(3)請仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+5.
(1)將y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;
(2)指出該二次函數(shù)圖象的對稱軸和頂點坐標(biāo);
(3)當(dāng)x取何值時,y隨x的增大而增大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標(biāo)有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=(x>0)的圖像在第一象限交于A、B兩點,點B坐標(biāo)為(4,2),連接OA、OB,過點B作BD⊥y軸,垂足為D,交OA于點C,且OC=CA.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)根據(jù)圖像直接說出不等式ax+b-<0的解集為______;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項,現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
請結(jié)合以上信息解答下列問題:
(1)m= ;
(2)請補(bǔ)全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學(xué)生,請你估計該校約有 名學(xué)生最喜愛足球活動.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com