【題目】下列四個手機應(yīng)用圖標(biāo)中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

【答案】A
【解析】解:A、∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確;

B、∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;

C、∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,也不是軸對稱圖形,故此選項錯誤;

D、∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,此圖形不是中心對稱圖形,也不是軸對稱圖形,故此選項錯誤.

所以答案是:A.

【考點精析】解答此題的關(guān)鍵在于理解軸對稱圖形的相關(guān)知識,掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸,以及對中心對稱及中心對稱圖形的理解,了解如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABBCCA,∠A∠ABC∠ACB,在△ABC的頂點AC處各有一只小螞蟻,它們同時出發(fā),分別以相同速度由AB和由CA爬行,經(jīng)過ts)后,它們分別爬行到了D,E處,設(shè)DCBE的交點為F

1△ACD≌△CBE嗎?為什么?

2)小螞蟻在爬行過程中,DCBE所成的∠BFC的大小有無變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,垂足為,點上,連接并延長交于點,連接.

求證:

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD中,AB=4,BC=3,AD=13,CD=12,B=90°,求該四邊形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積時,可以得到一個數(shù)學(xué)等式.例如由圖1可以得到.請回答下列問題:

1)寫出圖2中所表示的數(shù)學(xué)等式是 ;

2)如圖3,用四塊完全相同的長方形拼成正方形,用不同的方法,計算圖中陰影部分的面積,你能發(fā)現(xiàn)什么?(用含有,的式子表示)

3)通過上述的等量關(guān)系,我們可知: 當(dāng)兩個正數(shù)的和一定時,它們的差的絕對值越小,則積越 (填”“);當(dāng)兩個正數(shù)的積一定時,它們的差的絕對值越小,則和越 (填).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校近期舉辦了一年一度的經(jīng)典誦讀比賽.某班級因節(jié)目需要,須購買A、B兩種道具.已知購買1A道具比購買1B道具多10元,購買2A道具和3B道具共需要45元.

1)購買一件A道具和一件B道具各需要多少元?

2)根據(jù)班級情況,需要這兩種道具共60件,且購買兩種道具的總費用不超過620元.

請問道具A最多購買多少件?

若其中A道具購買的件數(shù)不少于B道具購買件數(shù),該班級共有幾種方案?試寫出所有方案,并求出最少費用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=kx+b的圖象分別交x軸,y軸于A、B兩點,與反比例函數(shù)y2= 的圖象交于C、D兩點,已知點C的坐標(biāo)為(﹣4,﹣1),點D的橫坐標(biāo)為2.

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)直接寫出當(dāng)x為何值時,y1>y2?
(3)點P是反比例函數(shù)在第一象限的圖象上的點,且點P的橫坐標(biāo)大于2,過點P做x軸的垂線,垂足為點E,當(dāng)△APE的面積為3時,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案