分析 由點(diǎn)A的坐標(biāo)利用待定系數(shù)法即可求出二次函數(shù)解析式,根據(jù)二次函數(shù)的解析式即可找出拋物線的對(duì)稱軸,從而得出點(diǎn)C的坐標(biāo),再將x=0代入二次函數(shù)解析式求出點(diǎn)B的坐標(biāo),利用三角形的面積公式即可得出結(jié)論.
解答 解:將A(2,0)代入函數(shù)y=-x2+bx-6,得:
0=-4+2b-6,
解得:b=5,
∴二次函數(shù)解析式為y=-x2+5x-6.
當(dāng)x=0時(shí),y=-6,
∴B(0,-6),
拋物線對(duì)稱軸為x=-$\frac{2a}$=$\frac{5}{2}$,
∴C($\frac{5}{2}$,0),
∴S△ABC=$\frac{1}{2}$AC•OB=$\frac{1}{2}$×($\frac{5}{2}$-2)×6=$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法求出函數(shù)解析式是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{13}$ | D. | $\frac{1}{52}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com