【題目】如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向、在C地北偏西45°方向.C 地在A地北偏東75°方向.且BD=BC=30cm.從A地到D地的距離是( )

A.30 m
B.20 m
C.30 m
D.15 m

【答案】D
【解析】過點D作DH垂直于AC,垂足為H,

由題意可知∠DAC=75°﹣30°=45°,

∵△BCD是等邊三角形,

∴∠DBC=60°,BD=BC=CD=30m,

∴DH= ×30=15 ,

∴AD= DH=15 m.

答:從A地到D地的距離是15 m.

所以答案是:D.

【考點精析】解答此題的關(guān)鍵在于理解關(guān)于方向角問題的相關(guān)知識,掌握指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在□ABCD中,點E,F分別在邊BCAD上,且CEAF,

(1)求證:△ABE ≌ △CDF

(2)求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點OAC的中點,AC2AB,延長ABG,使BGAB,連接GOBCE,延長GOADF,連接AE

求證:(1ABC≌△AOG;

2)猜測四邊形AECF的形狀并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線MN與直線PQ垂直相交于O,點A在直線PQ上運動,點B在直線MN上運動.

(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點AB在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大小.

(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點AB在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.

(3)如圖3,延長BAG,已知∠BAO、OAG的角平分線與∠BOQ的角平分線及延長線相交于EF,在AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.aa2=a2
B.(ab)2=ab
C.31=
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=x+k與y= (k為常數(shù),k≠0)的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形的一條邊與另一條邊的反向延長線組成的角,叫做三角形的外角。如圖,點DBC延長線上一點,則∠ACD為△ABC的一個外角。

求證:∠ACD=A+B

證明:過點CCEAB(過直線外一點 )

∴∠B=

A=

∵∠ACD=1+2

∴∠ACD= +B(等量代換)

應用:如圖是一個五角星,請利用上述結(jié)論求

A+B+C+D+E的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示,(每個小方格都是邊長為1個單位長度的正方形).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;

(2)將△ABC繞著點A順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B2,C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人共同計算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項式中的“+a”看成了“﹣a”,得到的結(jié)果為6x2+11x10;乙由于漏抄了第二個多項式中x的系數(shù),得到的結(jié)果為2x29x+10

(1)a、b的值.

(2)計算這道乘法題的正確結(jié)果.

查看答案和解析>>

同步練習冊答案