【題目】某鐵件加工廠用如圖1的長方形和正方形鐵片(長方形的寬與正方形的邊長相等)加工成如圖2的豎式與橫式兩種無蓋的長方體鐵容器.(加工時(shí)接縫材料不計(jì))
(1)如果加工豎式鐵容器與橫式鐵容器各1個(gè),則共需要長方形鐵片 張,正方形鐵片 張.
(2)現(xiàn)有長方形鐵片2014張,正方形鐵片1176張,如果加工成這兩種鐵容器,剛好鐵片全部用完,那么加工的豎式鐵容器、橫式鐵容器各有多少個(gè)?
(3)把長方體鐵容器加蓋可以加工成為鐵盒.現(xiàn)用35張鐵板做成與如圖相同的長方形鐵片和正方形鐵片,已知每張鐵板可做成3個(gè)長方形鐵片或4個(gè)正方形鐵片,也可以將一張鐵板做成1個(gè)長方形鐵片和2個(gè)正方形鐵片.該如何充分利用這些鐵板加工成鐵盒,最多可以加工成多少個(gè)鐵盒?
【答案】(1)共需要長方形鐵片7張,正方形鐵片3張;(2)加工的豎式容器有100個(gè),橫式容器有539個(gè);(3)最多可做19個(gè).
【解析】
(1)一個(gè)豎式長方體鐵容器需要4個(gè)長方形鐵皮和1個(gè)正方形鐵皮;一個(gè)橫式長方體鐵容器需要3個(gè)長方形鐵皮和2個(gè)正方形鐵皮;
(2)設(shè)加工的豎式鐵容器有x個(gè),橫式鐵容器有y個(gè),由題意得:①兩種容器共需長方形鐵皮2017張;②兩種容器共需正方形鐵皮1176張,根據(jù)等量關(guān)系列出方程組即可;
(3)設(shè)做長方形鐵片的鐵板m張,做正方形鐵片的鐵板n張,由題意得:①長方形鐵片的鐵板m張+正方形鐵片的鐵板n張=35張;②長方形鐵片的鐵片的總數(shù)=正方形鐵片總數(shù)×2,列出方程組,再解即可.
(1)共需要長方形鐵片7張,正方形鐵片3張.
(2)設(shè)加工的豎式容器有個(gè),橫式容器有個(gè).
,
解得.
∴加工的豎式容器有100個(gè),橫式容器有539個(gè).
(3)設(shè)做長方形鐵片的鐵板為塊,做正方形鐵片為鐵板為塊.
,解得,
∵在這35塊鐵板中,25塊做長方形鐵片可做張,9塊做正方形鐵片可做張,剩下1塊可裁出1張長方形鐵片和2張正方形鐵片,∴共做長方形鐵片張,正方形鐵片張,∴可做鐵盒個(gè).最多可做19個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)E在△ABC外部,點(diǎn)D在BC邊上,DE交AC于F,若∠1=∠2,∠C=∠E, AE=AC,
(1)求證: △ABC≌△ADE;
(2) 求證:∠2=∠3;
(3)當(dāng)∠2=90°時(shí),判斷△ABD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖像如圖所示,則①abc;②b2-4ac;③2a+b;④a+b+c這四個(gè)式子中,值為負(fù)數(shù)的有個(gè)( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是ABCD邊AB上的一點(diǎn),射線CP交DA的延長線于點(diǎn)E,則圖中相似的三角形有( )
A.0對(duì)
B.1對(duì)
C.2對(duì)
D.3對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AC的中點(diǎn),且∠A+∠CDB=90°,過點(diǎn)A,D作⊙O,使圓心O在AB上,⊙O與AB交于點(diǎn)E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE= : ,BC=6,求切線BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)
如圖,∠1+∠2=1800,∠3=∠4.
求證:EF∥GH.
證明:∵∠1+∠2=1800(已知),
∠AEG =∠1(對(duì)頂角相等)
∴ ,
∴AB∥CD( ),
∴∠AEG=∠ ( ),
∵∠3=∠4(已知),
∴∠3+∠AEG=∠4+∠ ,(等式性質(zhì))
∴ ,
∴EF∥GH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為A(﹣1,5),B(﹣4,1),C(﹣1,1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△AB′C′,點(diǎn)B,C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B′,C′,
(1)畫出△AB′C′;
(2)寫出點(diǎn)B′,C′的坐標(biāo);
(3)求出在△ABC旋轉(zhuǎn)的過程中,點(diǎn)C經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索題:
根據(jù)前面的規(guī)律,回答下列問題:
(1)=__________;
(2)當(dāng)x=4時(shí),;
(3)求:的值。(請(qǐng)寫出解題過程);
(4)求:的值的個(gè)位數(shù)字。(只寫答案)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com